Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications

Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications
Author :
Publisher : Springer Nature
Total Pages : 597
Release :
ISBN-10 : 9783031383250
ISBN-13 : 3031383257
Rating : 4/5 (50 Downloads)

Synopsis Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications by : Gilberto Rivera

In the age of transformative artificial intelligence (AI), which has the potential to revolutionize our lives, this book provides a comprehensive exploration of successful research and applications in AI and data analytics. Covering innovative approaches, advanced algorithms, and data analysis methodologies, this book addresses complex problems across topics such as machine learning, pattern recognition, data mining, optimization, and predictive modeling. With clear explanations, practical examples, and cutting-edge research, this book seeks to expand the understanding of a wide readership, including students, researchers, practitioners, and technology enthusiasts eager to explore these exciting fields. Featuring real-world applications in education, health care, climate modeling, cybersecurity, smart transportation, conversational systems, and material analysis, among others, this book highlights how these technologies can drive innovation and generate competitive advantages.

Data Science in Theory and Practice

Data Science in Theory and Practice
Author :
Publisher : Cambridge Scholars Publishing
Total Pages : 388
Release :
ISBN-10 : 9781036408992
ISBN-13 : 103640899X
Rating : 4/5 (92 Downloads)

Synopsis Data Science in Theory and Practice by : Jaydip Sen

This comprehensive edited volume showcases the latest breakthroughs and innovative research in the rapidly evolving field of data science, and brings together contributions from leading experts and researchers who push the boundaries of the field, offering readers a deep insight into the diverse facets of this transformative discipline. Spanning a wide spectrum of topics, the chapters in this volume cover key areas such as machine learning, artificial intelligence, statistical analysis, and ethical considerations in data science. Each chapter is a testament to the ongoing quest for knowledge and the relentless pursuit of excellence in harnessing the power of data for meaningful insights and actionable intelligence. Whether you're an experienced data scientist, a researcher exploring the frontiers of the field, or a novice eager to grasp the fundamentals, this edited volume serves as a valuable resource. The compilation not only highlights the current state of data science but also anticipates future trends, paving the way for continued advancements and paradigm shifts in the way we approach, analyze, and leverage data.

Applications of Computational Intelligence in Multi-Disciplinary Research

Applications of Computational Intelligence in Multi-Disciplinary Research
Author :
Publisher : Academic Press
Total Pages : 222
Release :
ISBN-10 : 9780128241769
ISBN-13 : 0128241764
Rating : 4/5 (69 Downloads)

Synopsis Applications of Computational Intelligence in Multi-Disciplinary Research by : Ahmed A. Elngar

Applications of Computational Intelligence in Multi-Disciplinary Research provides the readers with a comprehensive handbook for applying the powerful principles, concepts, and algorithms of computational intelligence to a wide spectrum of research cases. The book covers the main approaches used in computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods, all of which can be collectively viewed as soft computing. Other key approaches included are swarm intelligence and artificial immune systems. These approaches provide researchers with powerful tools for analysis and problem-solving when data is incomplete and when the problem under consideration is too complex for standard mathematics and the crisp logic approach of Boolean computing. - Provides an overview of the key methods of computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods - Includes case studies and real-world examples of computational intelligence applied in a variety of research topics, including bioinformatics, biomedical engineering, big data analytics, information security, signal processing, machine learning, nanotechnology, and optimization techniques - Presents a thorough technical explanation on how computational intelligence is applied that is suitable for a wide range of multidisciplinary and interdisciplinary research

Computational Intelligence Applications in Business Intelligence and Big Data Analytics

Computational Intelligence Applications in Business Intelligence and Big Data Analytics
Author :
Publisher : CRC Press
Total Pages : 362
Release :
ISBN-10 : 9781351720250
ISBN-13 : 1351720252
Rating : 4/5 (50 Downloads)

Synopsis Computational Intelligence Applications in Business Intelligence and Big Data Analytics by : Vijayan Sugumaran

There are a number of books on computational intelligence (CI), but they tend to cover a broad range of CI paradigms and algorithms rather than provide an in-depth exploration in learning and adaptive mechanisms. This book sets its focus on CI based architectures, modeling, case studies and applications in big data analytics, and business intelligence. The intended audiences of this book are scientists, professionals, researchers, and academicians who deal with the new challenges and advances in the specific areas mentioned above. Designers and developers of applications in these areas can learn from other experts and colleagues through this book.

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author :
Publisher : MIT Press
Total Pages : 853
Release :
ISBN-10 : 9780262361101
ISBN-13 : 0262361108
Rating : 4/5 (01 Downloads)

Synopsis Fundamentals of Machine Learning for Predictive Data Analytics, second edition by : John D. Kelleher

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Smart Computational Intelligence in Biomedical and Health Informatics

Smart Computational Intelligence in Biomedical and Health Informatics
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 0367624141
ISBN-13 : 9780367624149
Rating : 4/5 (41 Downloads)

Synopsis Smart Computational Intelligence in Biomedical and Health Informatics by : Amit Kumar Manocha

Smart Computational Intelligence in Biomedical and Health Informatics presents state-of-the-art innovations; research, design, and implementation of methodological and algorithmic solutions to data processing problems, including analysis of evolving trends in health informatics and computer-aided diagnosis. This book describes practical, applications-led research regarding the use of methods and devices in clinical diagnosis, disease prevention, and patient monitoring and management. It also covers simulation and modeling, measurement and control, analysis, information extraction and monitoring of physiological data in clinical medicine and the biological sciences. FEATURES Covers evolutionary approaches to solve optimization problems in biomedical engineering Discusses IoT, Cloud computing, and data analytics in healthcare informatics Provides computational intelligence-based solution for diagnosis of diseases Reviews modelling and simulations in designing of biomedical equipment Promotes machine learning-based approaches to improvements in biomedical engineering problems This book is for researchers, graduate students in healthcare, biomedical engineers, and those interested in health informatics, computational intelligence, and machine learning.