CR Manifolds and the Tangential Cauchy Riemann Complex

CR Manifolds and the Tangential Cauchy Riemann Complex
Author :
Publisher : Routledge
Total Pages : 386
Release :
ISBN-10 : 9781351457576
ISBN-13 : 1351457578
Rating : 4/5 (76 Downloads)

Synopsis CR Manifolds and the Tangential Cauchy Riemann Complex by : Al Boggess

CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.

Differential Geometry and Analysis on CR Manifolds

Differential Geometry and Analysis on CR Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 499
Release :
ISBN-10 : 9780817644833
ISBN-13 : 0817644830
Rating : 4/5 (33 Downloads)

Synopsis Differential Geometry and Analysis on CR Manifolds by : Sorin Dragomir

Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study

Partial Differential Equations in Several Complex Variables

Partial Differential Equations in Several Complex Variables
Author :
Publisher : American Mathematical Soc.
Total Pages : 396
Release :
ISBN-10 : 0821829610
ISBN-13 : 9780821829615
Rating : 4/5 (10 Downloads)

Synopsis Partial Differential Equations in Several Complex Variables by : So-chin Chen

This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.

Real Submanifolds in Complex Space and Their Mappings (PMS-47)

Real Submanifolds in Complex Space and Their Mappings (PMS-47)
Author :
Publisher : Princeton University Press
Total Pages : 418
Release :
ISBN-10 : 9781400883967
ISBN-13 : 1400883962
Rating : 4/5 (67 Downloads)

Synopsis Real Submanifolds in Complex Space and Their Mappings (PMS-47) by : M. Salah Baouendi

This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.

Calculus on Heisenberg Manifolds

Calculus on Heisenberg Manifolds
Author :
Publisher : Princeton University Press
Total Pages : 212
Release :
ISBN-10 : 0691085013
ISBN-13 : 9780691085012
Rating : 4/5 (13 Downloads)

Synopsis Calculus on Heisenberg Manifolds by : Richard Beals

The description for this book, Calculus on Heisenberg Manifolds. (AM-119), Volume 119, will be forthcoming.

The Neumann Problem for the Cauchy-Riemann Complex. (AM-75), Volume 75

The Neumann Problem for the Cauchy-Riemann Complex. (AM-75), Volume 75
Author :
Publisher : Princeton University Press
Total Pages : 156
Release :
ISBN-10 : 9781400881529
ISBN-13 : 1400881528
Rating : 4/5 (29 Downloads)

Synopsis The Neumann Problem for the Cauchy-Riemann Complex. (AM-75), Volume 75 by : Gerald B. Folland

Part explanation of important recent work, and part introduction to some of the techniques of modern partial differential equations, this monograph is a self-contained exposition of the Neumann problem for the Cauchy-Riemann complex and certain of its applications. The authors prove the main existence and regularity theorems in detail, assuming only a knowledge of the basic theory of differentiable manifolds and operators on Hilbert space. They discuss applications to the theory of several complex variables, examine the associated complex on the boundary, and outline other techniques relevant to these problems. In an appendix they develop the functional analysis of differential operators in terms of Sobolev spaces, to the extent it is required for the monograph.

Geometry of Cauchy-Riemann Submanifolds

Geometry of Cauchy-Riemann Submanifolds
Author :
Publisher : Springer
Total Pages : 402
Release :
ISBN-10 : 9789811009167
ISBN-13 : 9811009163
Rating : 4/5 (67 Downloads)

Synopsis Geometry of Cauchy-Riemann Submanifolds by : Sorin Dragomir

This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.

Tasty Bits of Several Complex Variables

Tasty Bits of Several Complex Variables
Author :
Publisher : Lulu.com
Total Pages : 142
Release :
ISBN-10 : 9781365095573
ISBN-13 : 1365095576
Rating : 4/5 (73 Downloads)

Synopsis Tasty Bits of Several Complex Variables by : Jiri Lebl

This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.

Foliations in Cauchy-Riemann Geometry

Foliations in Cauchy-Riemann Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 270
Release :
ISBN-10 : 9780821843048
ISBN-13 : 0821843044
Rating : 4/5 (48 Downloads)

Synopsis Foliations in Cauchy-Riemann Geometry by : Elisabetta Barletta

The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of

Function Theory of Several Complex Variables

Function Theory of Several Complex Variables
Author :
Publisher : American Mathematical Soc.
Total Pages : 586
Release :
ISBN-10 : 9780821827246
ISBN-13 : 0821827243
Rating : 4/5 (46 Downloads)

Synopsis Function Theory of Several Complex Variables by : Steven George Krantz

Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.