Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces

Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces
Author :
Publisher : Springer
Total Pages : 128
Release :
ISBN-10 : 9783642298462
ISBN-13 : 364229846X
Rating : 4/5 (62 Downloads)

Synopsis Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces by : Steffen Fröhlich

This book is intended for advanced students and young researchers interested in the analysis of partial differential equations and differential geometry. It discusses elementary concepts of surface geometry in higher-dimensional Euclidean spaces, in particular the differential equations of Gauss-Weingarten together with various integrability conditions and corresponding surface curvatures. It includes a chapter on curvature estimates for such surfaces, and, using results from potential theory and harmonic analysis, it addresses geometric and analytic methods to establish the existence and regularity of Coulomb frames in their normal bundles, which arise as critical points for a functional of total torsion.

Strings and Geometry

Strings and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 396
Release :
ISBN-10 : 082183715X
ISBN-13 : 9780821837153
Rating : 4/5 (5X Downloads)

Synopsis Strings and Geometry by : Clay Mathematics Institute. Summer School

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

The Geometry of Heisenberg Groups

The Geometry of Heisenberg Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 321
Release :
ISBN-10 : 9780821844953
ISBN-13 : 0821844954
Rating : 4/5 (53 Downloads)

Synopsis The Geometry of Heisenberg Groups by : Ernst Binz

"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.

Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold
Author :
Publisher : American Mathematical Soc.
Total Pages : 410
Release :
ISBN-10 : 9781470410377
ISBN-13 : 1470410370
Rating : 4/5 (77 Downloads)

Synopsis Eigenfunctions of the Laplacian on a Riemannian Manifold by : Steve Zelditch

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Trends in Complex Analysis, Differential Geometry, and Mathematical Physics

Trends in Complex Analysis, Differential Geometry, and Mathematical Physics
Author :
Publisher : World Scientific
Total Pages : 248
Release :
ISBN-10 : 9789812384522
ISBN-13 : 9812384529
Rating : 4/5 (22 Downloads)

Synopsis Trends in Complex Analysis, Differential Geometry, and Mathematical Physics by : Stancho Dimiev

The Sixth International Workshop on Complex Structures and Vector Fields was a continuation of the previous five workshops (1992, 1994, 1996, 1998, 2000) on similar research projects. This series of workshops aims at higher achievements in studies of new research subjects. The present volume will meet with the satisfaction of many readers.

Classical Theory of Gauge Fields

Classical Theory of Gauge Fields
Author :
Publisher : Princeton University Press
Total Pages : 456
Release :
ISBN-10 : 9781400825097
ISBN-13 : 1400825091
Rating : 4/5 (97 Downloads)

Synopsis Classical Theory of Gauge Fields by : Valery Rubakov

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.

Modern General Relativity

Modern General Relativity
Author :
Publisher : Cambridge University Press
Total Pages : 625
Release :
ISBN-10 : 9781108187305
ISBN-13 : 1108187307
Rating : 4/5 (05 Downloads)

Synopsis Modern General Relativity by : Mike Guidry

Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.

An Excursion Through Discrete Differential Geometry

An Excursion Through Discrete Differential Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 140
Release :
ISBN-10 : 9781470446628
ISBN-13 : 1470446626
Rating : 4/5 (28 Downloads)

Synopsis An Excursion Through Discrete Differential Geometry by : American Mathematical Society. Short Course, Discrete Differential Geometry

Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.

Problems And Solutions In Differential Geometry, Lie Series, Differential Forms, Relativity And Applications

Problems And Solutions In Differential Geometry, Lie Series, Differential Forms, Relativity And Applications
Author :
Publisher : World Scientific Publishing Company
Total Pages : 297
Release :
ISBN-10 : 9789813230842
ISBN-13 : 9813230843
Rating : 4/5 (42 Downloads)

Synopsis Problems And Solutions In Differential Geometry, Lie Series, Differential Forms, Relativity And Applications by : Willi-hans Steeb

This volume presents a collection of problems and solutions in differential geometry with applications. Both introductory and advanced topics are introduced in an easy-to-digest manner, with the materials of the volume being self-contained. In particular, curves, surfaces, Riemannian and pseudo-Riemannian manifolds, Hodge duality operator, vector fields and Lie series, differential forms, matrix-valued differential forms, Maurer-Cartan form, and the Lie derivative are covered.Readers will find useful applications to special and general relativity, Yang-Mills theory, hydrodynamics and field theory. Besides the solved problems, each chapter contains stimulating supplementary problems and software implementations are also included. The volume will not only benefit students in mathematics, applied mathematics and theoretical physics, but also researchers in the field of differential geometry.

Lectures on Choquet's Theorem

Lectures on Choquet's Theorem
Author :
Publisher :
Total Pages : 144
Release :
ISBN-10 : UOM:39015001316713
ISBN-13 :
Rating : 4/5 (13 Downloads)

Synopsis Lectures on Choquet's Theorem by : Robert Ralph Phelps

Appearing for the first time in book form are the main results centered about Choquet's integral representation theorem-an important recent chapter in functional analysis. This theorem has applications to analysis, probability, potential theory, and functional analysis; it will doubtless have further applications as it becomes better known. This readable book presupposes a knowledge of integration theory and elementary functional analysis, including the Krein-Milman theorem and the Riesz representation theorem. --Back cover.