Cooperation and Resource Allocation in Wireless Networking towards the IoT

Cooperation and Resource Allocation in Wireless Networking towards the IoT
Author :
Publisher : Linköping University Electronic Press
Total Pages : 62
Release :
ISBN-10 : 9789175190044
ISBN-13 : 9175190044
Rating : 4/5 (44 Downloads)

Synopsis Cooperation and Resource Allocation in Wireless Networking towards the IoT by : Ioannis M. Avgouleas

The Internet of Things (IoT) should be able to react with minimal human intervention and contribute to the Artificial Intelligence (AI) era requiring real-time and scalable operation under heterogeneous network infrastructures. This thesis investigates how cooperation and allocation of resources can contribute to the evolution of future wireless networks supporting the IoT. First, we examine how to allocate resources to IoT services which run on devices equipped with multiple network interfaces. The resources are heterogeneous and not interchangeable, and their allocation to a service can be split among different interfaces. We formulate an optimization model for this allocation problem, prove its complexity, and derive two heuristic algorithms to approximate the solution in large instances of the problem. The concept of virtualization is promising towards addressing the heterogeneity of IoT resources by providing an abstraction layer between software and hardware. Network function virtualization (NFV) decouples traditional network operations such a routing from proprietary hardware platforms and implements them as software entities known as virtualized network functions (VNFs). In the second paper, we study how VNF demands can be allocated to Virtual Machines (VMs) by considering the completion-time tolerance of the VNFs. We prove that the problem is NP-complete and devise a subgradient optimization algorithm to provide near-optimal solutions. Our numerical results demonstrate the effectiveness of our algorithm compared to two benchmark algorithms. Furthermore, we explore the potential of using intermediate nodes, the so-called relays, in IoT networks. In the third paper, we study a multi-user random-access network with a relay node assisting users in transmitting their packets to a destination node. We provide analytical expressions for the performance of the relay's queue and the system throughput. We optimize the relay’s operation parameters to maximize the network-wide throughput while maintaining the relay's queue stability. A stable queue at relay guarantees finite delay for the packets. Furthermore, we study the effect of the wireless links' signal-to-interference-plusnoise ratio (SINR) threshold and the self-interference (SI) cancellation on the per-user and network-wide throughput. Additionally, caching at the network edge has recently emerged as an encouraging solution to offload cellular traffic and improve several performance metrics of the network such as throughput, delay and energy efficiency. In the fourth paper, we study a wireless network that serves two types of traffic: cacheable and non-cacheable traffic. In the considered system, a wireless user with cache storage requests cacheable content from a data center connected with a wireless base station. The user can be assisted by a pair of wireless helpers that exchange non-cacheable content as well. We devise the system throughput and the delay experienced by the user and provide numerical results that demonstrate how they are affected by the non-cacheable packet arrivals, the availability of caching helpers, the parameters of the caches, and the request rate of the user. Finally, in the last paper, we consider a time-slotted wireless system that serves both cacheable and non-cacheable traffic with the assistance of a relay node. The latter has storage capabilities to serve both types of traffic. We investigate how allocating the storage capacity to cacheable and non-cacheable traffic affects the system throughput. Our numerical results provide useful insights into the system throughput e.g., that it is not necessarily beneficial to increase the storage capacity for the non-cacheable traffic to realize better throughput at the non-cacheable destination node.

IoT Networking Resource Allocation and Cooperation

IoT Networking Resource Allocation and Cooperation
Author :
Publisher :
Total Pages : 100
Release :
ISBN-10 : 9176854612
ISBN-13 : 9789176854617
Rating : 4/5 (12 Downloads)

Synopsis IoT Networking Resource Allocation and Cooperation by : Ioannis Avgouleas

The Internet of Things (IoT) promises that "anything that can be connected, will be connected". It comprises of Information and Communication Technologies that interconnect billions of physical and visual things with some "basic" intelligence. The emerging IoT services will be able to react with minimal human intervention and further contribute to the big data era that requires real-time, ultrareliable, ubiquitous, scalable, and heterogeneous operation. This thesis is the result of our investigations on problems dealing with the evolution of such technologies. First, we explore the potential of using relay i.e., intermediate, nodes that assist users to transmit their packets in a a cellular network. Paper I provides insights into how adapting the cooperation of the relay's receiver and transmitter optimizes the network-wide throughput while the relay's queue stability is guaranteed. The next part of the thesis copes with the resource allocation of services on IoT devices equipped with multiple network interfaces. The resources are heterogeneous and can be split among dierent interfaces. Additionally, they are not interchangeable. In paper II, we develop optimization models for this resource allocation problem, prove the complexity of the models, and derive results that give intuition into the problems. Moreover, we propose algorithms that approximate the optimal solution and show under which circumstances this is possible. Finally, in paper III, we present a resource allocation problem specically for smart cities services. In comparison to the previous problem denition, resources are of one type but the IoT network device can oer capacities that vary over time. Furthermore, services have a tolerance regarding their preferred scheduling, namely, their allocation over time. We parametrize each service with a pricing function to indicate its tolerance to be served at the beginning of the scheduling window. We prove that the problem is computationally hard and provide numerical results to gain insight into how different pricing weight functions impact the allocations' distribution within the scheduling window.

Flying Ad Hoc Networks

Flying Ad Hoc Networks
Author :
Publisher : Springer Nature
Total Pages : 297
Release :
ISBN-10 : 9789811688508
ISBN-13 : 9811688508
Rating : 4/5 (08 Downloads)

Synopsis Flying Ad Hoc Networks by : Jingjing Wang

Relying on unmanned autonomous flight control programs, unmanned aerial vehicles (UAVs) equipped with radio communication devices have been actively developed around the world. Given their low cost, flexible maneuvering and unmanned operation, UAVs have been widely used in both civilian operations and military missions, including environmental monitoring, emergency communications, express distribution, even military surveillance and attacks, for example. Given that a range of standards and protocols used in terrestrial wireless networks are not applicable to UAV networks, and that some practical constraints such as battery power and no-fly zone hinder the maneuverability capability of a single UAV, we need to explore advanced communication and networking theories and methods for the sake of supporting future ultra-reliable and low-latency applications. Typically, the full potential of UAV network’s functionalities can be tapped with the aid of the cooperation of multiple drones relying on their ad hoc networking, in-network communications and coordinated control. Furthermore, some swarm intelligence models and algorithms conceived for dynamic negotiation, path programming, formation flight and task assignment of multiple cooperative drones are also beneficial in terms of extending UAV’s functionalities and coverage, as well as of increasing their efficiency. We call the networking and cooperation of multiple drones as the terminology ‘flying ad hoc network (FANET)’, and there indeed are numerous new challenges to be overcome before the idespread of so-called heterogeneous FANETs. In this book, we examine a range of technical issues in FANETs, from physical-layer channel modeling to MAC-layer resource allocation, while also introducing readers to UAV aided mobile edge computing techniques.

Energy Efficient Cooperative Wireless Communication and Networks

Energy Efficient Cooperative Wireless Communication and Networks
Author :
Publisher : CRC Press
Total Pages : 223
Release :
ISBN-10 : 9781482238211
ISBN-13 : 1482238217
Rating : 4/5 (11 Downloads)

Synopsis Energy Efficient Cooperative Wireless Communication and Networks by : Zhengguo Sheng

Compared with conventional communications, cooperative communication allows multiple users in a wireless network to coordinate their packet transmissions and share each other's resources, thus achieving high-performance gain and better service coverage and reliability. Energy Efficient Cooperative Wireless Communication and Networks provides a comprehensive look at energy efficiency and system design of cooperative wireless communication. Introducing effective cooperative wireless communication schemes, the book supplies the understanding and methods required to improve energy efficiency, reliability, and end-to-end protocol designs for wireless communication systems. It explains the practical benefits and limitations of cooperative transmissions along with the associated designs of upper-layer protocols, including MAC, routing, and transport protocol. The book considers power efficiency as a main objective in cooperative communication to ensure quality-of-service (QoS) requirements. It explains how to bring the performance gain at the physical layer up to the network layer and how to allocate network resources dynamically through MAC/scheduling and routing to trade off the performance benefits of given transmissions against network costs. Because the techniques detailed in each chapter can help readers achieve energy efficiency and reliability in wireless networks, they have the potential to impact a range of industry areas, including wireless communication, wireless sensor networks, and ad hoc networks. The book includes numerous examples, best practices, and models that capture key issues in real-world applications. Along with algorithms and tips for effective design, the book supplies the understanding you will need to achieve high-performing and energy efficient wireless networks with improved service coverage and reliability.

Cooperative Networking in a Heterogeneous Wireless Medium

Cooperative Networking in a Heterogeneous Wireless Medium
Author :
Publisher : Springer Science & Business Media
Total Pages : 94
Release :
ISBN-10 : 9781461470793
ISBN-13 : 146147079X
Rating : 4/5 (93 Downloads)

Synopsis Cooperative Networking in a Heterogeneous Wireless Medium by : Muhammad Ismail

This brief focuses on radio resource allocation in a heterogeneous wireless medium. It presents radio resource allocation algorithms with decentralized implementation, which support both single-network and multi-homing services. The brief provides a set of cooperative networking algorithms, which rely on the concepts of short-term call traffic load prediction, network cooperation, convex optimization, and decomposition theory. In the proposed solutions, mobile terminals play an active role in the resource allocation operation, instead of their traditional role as passive service recipients in the networking environment.

Resource Allocation in Cooperative and Non-cooperative Energy-constrained Wireless Networks

Resource Allocation in Cooperative and Non-cooperative Energy-constrained Wireless Networks
Author :
Publisher :
Total Pages : 140
Release :
ISBN-10 : 0549195491
ISBN-13 : 9780549195498
Rating : 4/5 (91 Downloads)

Synopsis Resource Allocation in Cooperative and Non-cooperative Energy-constrained Wireless Networks by : Hithesh Nama

In this dissertation, we study resource allocation in networks comprised of wireless devices that are energy-constrained. Depending on the degree of collaboration among the nodes and the nature of communication a wide variety of networks emerge. At one end of the spectrum are wireless sensor networks that are designed to cooperatively perform a common task. At the other end of the spectrum are ad-hoc networks of selfish agents that wish to communicate with other agents while attempting to keep their individual energy costs to a minimum.

Robust Resource Allocation in Future Wireless Networks

Robust Resource Allocation in Future Wireless Networks
Author :
Publisher : Springer
Total Pages : 255
Release :
ISBN-10 : 9783319503899
ISBN-13 : 3319503898
Rating : 4/5 (99 Downloads)

Synopsis Robust Resource Allocation in Future Wireless Networks by : Saeedeh Parsaeefard

This book presents state-of-the-art research on robust resource allocation in current and future wireless networks. The authors describe the nominal resource allocation problems in wireless networks and explain why introducing robustness in such networks is desirable. Then, depending on the objectives of the problem, namely maximizing the social utility or the per-user utility, cooperative or competitive approaches are explained and their corresponding robust problems are considered in detail. For each approach, the costs and benefits of robust schemes are discussed and the algorithms for reducing their costs and improving their benefits are presented. Considering the fact that such problems are inherently non-convex and intractable, a taxonomy of different relaxation techniques is presented, and applications of such techniques are shown via several examples throughout the book. Finally, the authors argue that resource allocation continues to be an important issue in future wireless networks, and propose specific problems for future research.

Cooperation and Integration in 6G Heterogeneous Networks

Cooperation and Integration in 6G Heterogeneous Networks
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 9811976503
ISBN-13 : 9789811976506
Rating : 4/5 (03 Downloads)

Synopsis Cooperation and Integration in 6G Heterogeneous Networks by : Jun Du

To provide ubiquitous and various services, 6G networks tend to be more comprehensive and multidimensional by integrating current terrestrial networks with space-/air-based information networks and marine information networks; then, heterogeneous network resources, as well as different types of users and data, will be also integrated. Driven by the exponentially growing demands of multimedia data traffic and computation-heavy applications, 6G heterogenous networks are expected to achieve a high QoS with ultra-reliability and low latency. In response, resource allocation has been considered an important factor that can improve 6G performance directly by configuring heterogeneous communication, computing and caching resources effectively and efficiently. The book addresses a range of technical issues in cooperative resource allocation and information sharing for the future 6G heterogenous networks, from the terrestrial ultra-dense networks and space-based networks to the integrated satellite-terrestrial networks, as well as introducing the effects of cooperative behavior among mobile users on increasing capacity, trustworthiness and privacy. For the cooperative transmission in heterogeneous networks, the authors commence with the traffic offloading problems in terrestrial ultra-dense networks, and the cognitive and cooperative mechanisms in heterogeneous space-based networks, the stability analysis of which is also provided. Moreover, for the cooperative transmission in integrated satellite-terrestrial networks, the authors present a pair of dynamic and adaptive resource allocation strategies for traffic offloading, cooperative beamforming and traffic prediction based cooperative transmission. Later, the authors discuss the cooperative computation and caching resource allocation in heterogeneous networks, with the highlight of providing our current studies on the game theory, auction theory and deep reinforcement learning based approaches. Meanwhile, the authors introduce the cooperative resource and information sharing among users, in which capacity oriented-, trustworthiness oriented-, and privacy oriented cooperative mechanisms are investigated. Finally, the conclusion is drawn.

Resource Allocation and Cross-layer Control in Wireless Networks

Resource Allocation and Cross-layer Control in Wireless Networks
Author :
Publisher : Now Publishers Inc
Total Pages : 161
Release :
ISBN-10 : 9781933019260
ISBN-13 : 1933019263
Rating : 4/5 (60 Downloads)

Synopsis Resource Allocation and Cross-layer Control in Wireless Networks by : Leonidas Georgiadis

Information flow in a telecommunication network is accomplished through the interaction of mechanisms at various design layers with the end goal of supporting the information exchange needs of the applications. In wireless networks in particular, the different layers interact in a nontrivial manner in order to support information transfer. In this text we will present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline. The model allows for arbitrary network topologies as well as traffic forwarding modes, including datagrams and virtual circuits. Furthermore the time varying nature of a wireless network, due either to fading channels or to changing connectivity due to mobility, is adequately captured in our model to allow for state dependent network control policies. Quantitative performance measures that capture the quality of service requirements in these systems depending on the supported applications are discussed, including throughput maximization, energy consumption minimization, rate utility function maximization as well as general performance functionals. Cross-layer control algorithms with optimal or suboptimal performance with respect to the above measures are presented and analyzed. A detailed exposition of the related analysis and design techniques is provided.