Convolutional Neural Networks in Visual Computing

Convolutional Neural Networks in Visual Computing
Author :
Publisher : CRC Press
Total Pages : 204
Release :
ISBN-10 : 9781351650328
ISBN-13 : 1351650327
Rating : 4/5 (28 Downloads)

Synopsis Convolutional Neural Networks in Visual Computing by : Ragav Venkatesan

This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.

Convolutional Neural Networks in Visual Computing

Convolutional Neural Networks in Visual Computing
Author :
Publisher : CRC Press
Total Pages : 187
Release :
ISBN-10 : 9781498770408
ISBN-13 : 1498770401
Rating : 4/5 (08 Downloads)

Synopsis Convolutional Neural Networks in Visual Computing by : Ragav Venkatesan

This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.

Convolutional Neural Networks in Visual Computing

Convolutional Neural Networks in Visual Computing
Author :
Publisher : Data-Enabled Engineering
Total Pages : 168
Release :
ISBN-10 : 1138747955
ISBN-13 : 9781138747951
Rating : 4/5 (55 Downloads)

Synopsis Convolutional Neural Networks in Visual Computing by : Ragav Venkatesan

This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.

A Guide to Convolutional Neural Networks for Computer Vision

A Guide to Convolutional Neural Networks for Computer Vision
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 284
Release :
ISBN-10 : 9781681732824
ISBN-13 : 1681732823
Rating : 4/5 (24 Downloads)

Synopsis A Guide to Convolutional Neural Networks for Computer Vision by : Salman Khan

Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.

Advances in Visual Computing

Advances in Visual Computing
Author :
Publisher : Springer
Total Pages : 880
Release :
ISBN-10 : 9783319142494
ISBN-13 : 3319142496
Rating : 4/5 (94 Downloads)

Synopsis Advances in Visual Computing by : George Bebis

The two volume set LNCS 8887 and 8888 constitutes the refereed proceedings of the 10th International Symposium on Visual Computing, ISVC 2014, held in Las Vegas, NV, USA. The 74 revised full papers and 55 poster papers presented together with 39 special track papers were carefully reviewed and selected from more than 280 submissions. The papers are organized in topical sections: Part I (LNCS 8887) comprises computational bioimaging, computer graphics; motion, tracking, feature extraction and matching, segmentation, visualization, mapping, modeling and surface reconstruction, unmanned autonomous systems, medical imaging, tracking for human activity monitoring, intelligent transportation systems, visual perception and robotic systems. Part II (LNCS 8888) comprises topics such as computational bioimaging , recognition, computer vision, applications, face processing and recognition, virtual reality, and the poster sessions.

Cellular Neural Networks and Visual Computing

Cellular Neural Networks and Visual Computing
Author :
Publisher : Cambridge University Press
Total Pages : 412
Release :
ISBN-10 : 0521018633
ISBN-13 : 9780521018630
Rating : 4/5 (33 Downloads)

Synopsis Cellular Neural Networks and Visual Computing by : Leon O. Chua

Cellular Nonlinear/Neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Leon Chua, co-inventor of the CNN, and Tamàs Roska are both highly respected pioneers in the field.

Advances in Visual Computing

Advances in Visual Computing
Author :
Publisher : Springer Nature
Total Pages : 718
Release :
ISBN-10 : 9783030337209
ISBN-13 : 3030337200
Rating : 4/5 (09 Downloads)

Synopsis Advances in Visual Computing by : George Bebis

This book constitutes the refereed proceedings of the 14th International Symposium on Visual Computing, ISVC 2019, held in Lake Tahoe, NV, USA in October 2019. The 100 papers presented in this double volume were carefully reviewed and selected from 163 submissions. The papers are organized into the following topical sections: Deep Learning I; Computer Graphics I; Segmentation/Recognition; Video Analysis and Event Recognition; Visualization; ST: Computational Vision, AI and Mathematical methods for Biomedical and Biological Image Analysis; Biometrics; Virtual Reality I; Applications I; ST: Vision for Remote Sensing and Infrastructure Inspection; Computer Graphics II; Applications II; Deep Learning II; Virtual Reality II; Object Recognition/Detection/Categorization; and Poster.

Guide to Convolutional Neural Networks

Guide to Convolutional Neural Networks
Author :
Publisher : Springer
Total Pages : 303
Release :
ISBN-10 : 9783319575506
ISBN-13 : 3319575503
Rating : 4/5 (06 Downloads)

Synopsis Guide to Convolutional Neural Networks by : Hamed Habibi Aghdam

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website. This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Interpretable Machine Learning

Interpretable Machine Learning
Author :
Publisher : Lulu.com
Total Pages : 320
Release :
ISBN-10 : 9780244768522
ISBN-13 : 0244768528
Rating : 4/5 (22 Downloads)

Synopsis Interpretable Machine Learning by : Christoph Molnar

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014
Author :
Publisher : Springer
Total Pages : 871
Release :
ISBN-10 : 9783319105932
ISBN-13 : 3319105930
Rating : 4/5 (32 Downloads)

Synopsis Computer Vision -- ECCV 2014 by : David Fleet

The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.