Convex Analysis in General Vector Spaces

Convex Analysis in General Vector Spaces
Author :
Publisher : World Scientific
Total Pages : 389
Release :
ISBN-10 : 9789812380678
ISBN-13 : 9812380671
Rating : 4/5 (78 Downloads)

Synopsis Convex Analysis in General Vector Spaces by : C. Zalinescu

The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.

Convex Analysis In General Vector Spaces

Convex Analysis In General Vector Spaces
Author :
Publisher : World Scientific
Total Pages : 389
Release :
ISBN-10 : 9789814488150
ISBN-13 : 9814488151
Rating : 4/5 (50 Downloads)

Synopsis Convex Analysis In General Vector Spaces by : C Zalinescu

The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.

Optimization by Vector Space Methods

Optimization by Vector Space Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 348
Release :
ISBN-10 : 047118117X
ISBN-13 : 9780471181170
Rating : 4/5 (7X Downloads)

Synopsis Optimization by Vector Space Methods by : David G. Luenberger

Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Convex Analysis

Convex Analysis
Author :
Publisher : Princeton University Press
Total Pages : 470
Release :
ISBN-10 : 9781400873173
ISBN-13 : 1400873177
Rating : 4/5 (73 Downloads)

Synopsis Convex Analysis by : Ralph Tyrell Rockafellar

Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.

Locally Convex Spaces and Harmonic Analysis: An Introduction

Locally Convex Spaces and Harmonic Analysis: An Introduction
Author :
Publisher : SIAM
Total Pages : 203
Release :
ISBN-10 : 9781611976656
ISBN-13 : 1611976650
Rating : 4/5 (56 Downloads)

Synopsis Locally Convex Spaces and Harmonic Analysis: An Introduction by : Philippe G. Ciarlet

This self-contained textbook covers the fundamentals of two basic topics of linear functional analysis: locally convex spaces and harmonic analysis. Readers will find detailed introductions to topological vector spaces, distribution theory, weak topologies, the Fourier transform, the Hilbert transform, and Calderón–Zygmund singular integrals. An ideal introduction to more advanced texts, the book complements Ciarlet’s Linear and Nonlinear Functional Analysis with Applications (SIAM), in which these two topics were not treated. Pedagogical features such as detailed proofs and 93 problems make the book ideal for a one-semester first-year graduate course or for self-study. The book is intended for advanced undergraduates and first-year graduate students and researchers. It is appropriate for courses on functional analysis, distribution theory, Fourier transform, and harmonic analysis.

Modern Methods in Topological Vector Spaces

Modern Methods in Topological Vector Spaces
Author :
Publisher : Courier Corporation
Total Pages : 324
Release :
ISBN-10 : 9780486493534
ISBN-13 : 0486493539
Rating : 4/5 (34 Downloads)

Synopsis Modern Methods in Topological Vector Spaces by : Albert Wilansky

"Designed for a one-year course in topological vector spaces, this text is geared toward beginning graduate students of mathematics. Topics include Banach space, open mapping and closed graph theorems, local convexity, duality, equicontinuity, operators,inductive limits, and compactness and barrelled spaces. Extensive tables cover theorems and counterexamples. Rich problem sections throughout the book. 1978 edition"--

Locally Convex Spaces

Locally Convex Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 217
Release :
ISBN-10 : 9783319020457
ISBN-13 : 3319020455
Rating : 4/5 (57 Downloads)

Synopsis Locally Convex Spaces by : M. Scott Osborne

For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis. While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.

Locally Convex Spaces

Locally Convex Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 549
Release :
ISBN-10 : 9783322905598
ISBN-13 : 3322905594
Rating : 4/5 (98 Downloads)

Synopsis Locally Convex Spaces by :

The present book grew out of several courses which I have taught at the University of Zürich and at the University of Maryland during the past seven years. It is primarily intended to be a systematic text on locally convex spaces at the level of a student who has some familiarity with general topology and basic measure theory. However, since much of the material is of fairly recent origin and partly appears here for the first time in a book, and also since some well-known material has been given a not so well-known treatment, I hope that this book might prove useful even to more advanced readers. And in addition I hope that the selection ofmaterial marks a sufficient set-offfrom the treatments in e.g. N. Bourbaki [4], [5], R.E. Edwards [1], K. Floret-J. Wloka [1], H.G. Garnir-M. De Wilde-J. Schmets [1], AGrothendieck [13], H. Heuser [1], J. Horvath [1], J.L. Kelley-I. Namioka et al. [1], G. Köthe [7], [10], A P. Robertson W. Robertson [1], W. Rudin [2], H.H. Schaefer [1], F. Treves [l], A Wilansky [1]. A few sentences should be said about the organization of the book. It consists of 21 chapters which are grouped into three parts. Each chapter splits into several sections. Chapters, sections, and the statements therein are enumerated in consecutive fashion.

Functional Analysis, Spectral Theory, and Applications

Functional Analysis, Spectral Theory, and Applications
Author :
Publisher : Springer
Total Pages : 626
Release :
ISBN-10 : 9783319585406
ISBN-13 : 3319585401
Rating : 4/5 (06 Downloads)

Synopsis Functional Analysis, Spectral Theory, and Applications by : Manfred Einsiedler

This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

Topological Vector Spaces, Distributions and Kernels

Topological Vector Spaces, Distributions and Kernels
Author :
Publisher : Elsevier
Total Pages : 582
Release :
ISBN-10 : 9781483223629
ISBN-13 : 1483223620
Rating : 4/5 (29 Downloads)

Synopsis Topological Vector Spaces, Distributions and Kernels by : François Treves

Topological Vector Spaces, Distributions and Kernels discusses partial differential equations involving spaces of functions and space distributions. The book reviews the definitions of a vector space, of a topological space, and of the completion of a topological vector space. The text gives examples of Frechet spaces, Normable spaces, Banach spaces, or Hilbert spaces. The theory of Hilbert space is similar to finite dimensional Euclidean spaces in which they are complete and carry an inner product that can determine their properties. The text also explains the Hahn-Banach theorem, as well as the applications of the Banach-Steinhaus theorem and the Hilbert spaces. The book discusses topologies compatible with a duality, the theorem of Mackey, and reflexivity. The text describes nuclear spaces, the Kernels theorem and the nuclear operators in Hilbert spaces. Kernels and topological tensor products theory can be applied to linear partial differential equations where kernels, in this connection, as inverses (or as approximations of inverses), of differential operators. The book is suitable for vector mathematicians, for students in advanced mathematics and physics.