Convex Analysis and Nonlinear Geometric Elliptic Equations

Convex Analysis and Nonlinear Geometric Elliptic Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 524
Release :
ISBN-10 : 9783642698811
ISBN-13 : 3642698816
Rating : 4/5 (11 Downloads)

Synopsis Convex Analysis and Nonlinear Geometric Elliptic Equations by : Ilya J. Bakelman

Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.

Convex Analysis and Nonlinear Geometric Elliptic Equations

Convex Analysis and Nonlinear Geometric Elliptic Equations
Author :
Publisher : Springer
Total Pages : 540
Release :
ISBN-10 : 3540136207
ISBN-13 : 9783540136200
Rating : 4/5 (07 Downloads)

Synopsis Convex Analysis and Nonlinear Geometric Elliptic Equations by : Ilya J. Bakelman

Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.

The Monge—Ampère Equation

The Monge—Ampère Equation
Author :
Publisher : Springer Science & Business Media
Total Pages : 140
Release :
ISBN-10 : 9781461201953
ISBN-13 : 1461201950
Rating : 4/5 (53 Downloads)

Synopsis The Monge—Ampère Equation by : Cristian E. Gutierrez

The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.

Geometric Analysis and Nonlinear Partial Differential Equations

Geometric Analysis and Nonlinear Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 663
Release :
ISBN-10 : 9783642556272
ISBN-13 : 3642556272
Rating : 4/5 (72 Downloads)

Synopsis Geometric Analysis and Nonlinear Partial Differential Equations by : Stefan Hildebrandt

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.

Semilinear Elliptic Equations

Semilinear Elliptic Equations
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 490
Release :
ISBN-10 : 9783110556285
ISBN-13 : 3110556286
Rating : 4/5 (85 Downloads)

Synopsis Semilinear Elliptic Equations by : Takashi Suzuki

This authoritative monograph presents in detail classical and modern methods for the study of semilinear elliptic equations, that is, methods to study the qualitative properties of solutions using variational techniques, the maximum principle, blowup analysis, spectral theory, topological methods, etc. The book is self-contained and is addressed to experienced and beginning researchers alike.

Nonlinear Elliptic Equations of the Second Order

Nonlinear Elliptic Equations of the Second Order
Author :
Publisher : American Mathematical Soc.
Total Pages : 378
Release :
ISBN-10 : 9781470426071
ISBN-13 : 1470426072
Rating : 4/5 (71 Downloads)

Synopsis Nonlinear Elliptic Equations of the Second Order by : Qing Han

Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.

Analysis of Monge–Ampère Equations

Analysis of Monge–Ampère Equations
Author :
Publisher : American Mathematical Society
Total Pages : 599
Release :
ISBN-10 : 9781470474201
ISBN-13 : 1470474204
Rating : 4/5 (01 Downloads)

Synopsis Analysis of Monge–Ampère Equations by : Nam Q. Le

This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes many important recent advances, including Savin's boundary localization theorem, spectral theory, and interior and boundary regularity in Sobolev and Hölder spaces with optimal assumptions. It highlights geometric aspects of the theory and connections with adjacent research areas. This self-contained book provides the necessary background and techniques in convex geometry, real analysis, and partial differential equations, presents detailed proofs of all theorems, explains subtle constructions, and includes well over a hundred exercises. It can serve as an accessible text for graduate students as well as researchers interested in this subject.

Geometric Partial Differential Equations - Part I

Geometric Partial Differential Equations - Part I
Author :
Publisher : Elsevier
Total Pages : 712
Release :
ISBN-10 : 9780444640048
ISBN-13 : 0444640045
Rating : 4/5 (48 Downloads)

Synopsis Geometric Partial Differential Equations - Part I by :

Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. - About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization - Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading - The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs

Analysis

Analysis
Author :
Publisher : Springer
Total Pages : 687
Release :
ISBN-10 : 9783319324111
ISBN-13 : 331932411X
Rating : 4/5 (11 Downloads)

Synopsis Analysis by : Jean-Paul Penot

This textbook covers the main results and methods of real analysis in a single volume. Taking a progressive approach to equations and transformations, this book starts with the very foundations of real analysis (set theory, order, convergence, and measure theory) before presenting powerful results that can be applied to concrete problems. In addition to classical results of functional analysis, differential calculus and integration, Analysis discusses topics such as convex analysis, dissipative operators and semigroups which are often absent from classical treatises. Acknowledging that analysis has significantly contributed to the understanding and development of the present world, the book further elaborates on techniques which pervade modern civilization, including wavelets in information theory, the Radon transform in medical imaging and partial differential equations in various mechanical and physical phenomena. Advanced undergraduate and graduate students, engineers as well as practitioners wishing to familiarise themselves with concepts and applications of analysis will find this book useful. With its content split into several topics of interest, the book’s style and layout make it suitable for use in several courses, while its self-contained character makes it appropriate for self-study.

Trends in Nonlinear Analysis

Trends in Nonlinear Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 427
Release :
ISBN-10 : 9783662052815
ISBN-13 : 3662052814
Rating : 4/5 (15 Downloads)

Synopsis Trends in Nonlinear Analysis by : Markus Kirkilionis

Applied mathematics is a central connecting link between scientific observations and their theoretical interpretation. Nonlinear analysis has surely contributed major developments which nowadays shape the face of applied mathematics. At the beginning of the millennium, all sciences are expanding at increased speed. Technological, ecological, economical and medical problem solving is a central issue of every modern society. Mathematical models help to expose fundamental structures hidden in these problems and serve as unifying tools to deepen our understanding. What are the new challenges applied mathematics has to face with the increased diversity of scientific problems? In which direction should the classical tools of nonlinear analysis be developed further? How do new available technologies influence the development of the field? How can problems be solved which have been beyond reach in former times? It is the aim of this book to explore new developments in the field by way of discussion of selected topics from nonlinear analysis.