Contemporary Experimental Design, Multivariate Analysis and Data Mining

Contemporary Experimental Design, Multivariate Analysis and Data Mining
Author :
Publisher : Springer Nature
Total Pages : 384
Release :
ISBN-10 : 9783030461614
ISBN-13 : 3030461610
Rating : 4/5 (14 Downloads)

Synopsis Contemporary Experimental Design, Multivariate Analysis and Data Mining by : Jianqing Fan

The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang’s 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang’s numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.

Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques
Author :
Publisher : Springer Science & Business Media
Total Pages : 757
Release :
ISBN-10 : 9780387781891
ISBN-13 : 0387781897
Rating : 4/5 (91 Downloads)

Synopsis Modern Multivariate Statistical Techniques by : Alan J. Izenman

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

Data Analysis for Experimental Design

Data Analysis for Experimental Design
Author :
Publisher : Guilford Press
Total Pages : 458
Release :
ISBN-10 : 9781606230176
ISBN-13 : 1606230174
Rating : 4/5 (76 Downloads)

Synopsis Data Analysis for Experimental Design by : Richard Gonzalez

This engaging text shows how statistics and methods work together, demonstrating a variety of techniques for evaluating statistical results against the specifics of the methodological design. Richard Gonzalez elucidates the fundamental concepts involved in analysis of variance (ANOVA), focusing on single degree-of-freedom tests, or comparisons, wherever possible. Potential threats to making a causal inference from an experimental design are highlighted. With an emphasis on basic between-subjects and within-subjects designs, Gonzalez resists presenting the countless "exceptions to the rule" that make many statistics textbooks so unwieldy and confusing for students and beginning researchers. Ideal for graduate courses in experimental design or data analysis, the text may also be used by advanced undergraduates preparing to do senior theses. Useful pedagogical features include: Discussions of the assumptions that underlie each statistical test Sequential, step-by-step presentations of statistical procedures End-of-chapter questions and exercises Accessible writing style with scenarios and examples This book is intended for graduate students in psychology and education, practicing researchers seeking a readable refresher on analysis of experimental designs, and advanced undergraduates preparing senior theses. It serves as a text for graduate level experimental design, data analysis, and experimental methods courses taught in departments of psychology and education. It is also useful as a supplemental text for advanced undergraduate honors courses.

Encyclopedia of Research Design

Encyclopedia of Research Design
Author :
Publisher : SAGE
Total Pages : 1779
Release :
ISBN-10 : 9781412961271
ISBN-13 : 1412961270
Rating : 4/5 (71 Downloads)

Synopsis Encyclopedia of Research Design by : Neil J. Salkind

"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications
Author :
Publisher : Elsevier
Total Pages : 824
Release :
ISBN-10 : 9780124166455
ISBN-13 : 0124166458
Rating : 4/5 (55 Downloads)

Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Making Sense of Multivariate Data Analysis

Making Sense of Multivariate Data Analysis
Author :
Publisher : SAGE
Total Pages : 256
Release :
ISBN-10 : 1412904013
ISBN-13 : 9781412904018
Rating : 4/5 (13 Downloads)

Synopsis Making Sense of Multivariate Data Analysis by : John Spicer

A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.

Applied Univariate, Bivariate, and Multivariate Statistics Using Python

Applied Univariate, Bivariate, and Multivariate Statistics Using Python
Author :
Publisher : John Wiley & Sons
Total Pages : 304
Release :
ISBN-10 : 9781119578185
ISBN-13 : 1119578183
Rating : 4/5 (85 Downloads)

Synopsis Applied Univariate, Bivariate, and Multivariate Statistics Using Python by : Daniel J. Denis

Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.

Modern Engineering Statistics

Modern Engineering Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 736
Release :
ISBN-10 : 0470128437
ISBN-13 : 9780470128435
Rating : 4/5 (37 Downloads)

Synopsis Modern Engineering Statistics by : Thomas P. Ryan

An introductory perspective on statistical applications in the field of engineering Modern Engineering Statistics presents state-of-the-art statistical methodology germane to engineering applications. With a nice blend of methodology and applications, this book provides and carefully explains the concepts necessary for students to fully grasp and appreciate contemporary statistical techniques in the context of engineering. With almost thirty years of teaching experience, many of which were spent teaching engineering statistics courses, the author has successfully developed a book that displays modern statistical techniques and provides effective tools for student use. This book features: Examples demonstrating the use of statistical thinking and methodology for practicing engineers A large number of chapter exercises that provide the opportunity for readers to solve engineering-related problems, often using real data sets Clear illustrations of the relationship between hypothesis tests and confidence intervals Extensive use of Minitab and JMP to illustrate statistical analyses The book is written in an engaging style that interconnects and builds on discussions, examples, and methods as readers progress from chapter to chapter. The assumptions on which the methodology is based are stated and tested in applications. Each chapter concludes with a summary highlighting the key points that are needed in order to advance in the text, as well as a list of references for further reading. Certain chapters that contain more than a few methods also provide end-of-chapter guidelines on the proper selection and use of those methods. Bridging the gap between statistics education and real-world applications, Modern Engineering Statistics is ideal for either a one- or two-semester course in engineering statistics.

Multivariate Data Analysis

Multivariate Data Analysis
Author :
Publisher : Pearson Higher Ed
Total Pages : 816
Release :
ISBN-10 : 9780133792683
ISBN-13 : 0133792684
Rating : 4/5 (83 Downloads)

Synopsis Multivariate Data Analysis by : Joseph Hair

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.

Social Science Research Design and Statistics

Social Science Research Design and Statistics
Author :
Publisher : Watertree Press LLC
Total Pages : 628
Release :
ISBN-10 : 9780978718688
ISBN-13 : 0978718682
Rating : 4/5 (88 Downloads)

Synopsis Social Science Research Design and Statistics by : Alfred P. Rovai

This book integrates social science research methods and the descriptions of over 40 univariate, bivariate, and multivariate tests to include a description of the purpose, key assumptions and requirements, example research question and null hypothesis, SPSS procedures, display and interpretation of SPSS output, and what to report for each test. It is classroom tested and current with IBM SPSS 22. This expanded second edition also features companion website materials including copies of the IBM SPSS datasets used to create the SPSS output presented in the book, and Microsoft PowerPoint presentations that display step-by-step instructions on how to run popular SPSS procedures. Included throughout the book are various sidebars highlighting key points, images and SPSS screenshots to assist understanding the material presented, self-test reviews at the end of each chapter, a decision tree to facilitate identification of the proper statistical test, examples of SPSS output with accompanying analysis and interpretations, links to relevant web sites, and a comprehensive glossary. Underpinning all these features is a concise, easy to understand explanation of the material.