Condensed Matter Optical Spectroscopy
Download Condensed Matter Optical Spectroscopy full books in PDF, epub, and Kindle. Read online free Condensed Matter Optical Spectroscopy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Iulian Ionita |
Publisher |
: CRC Press |
Total Pages |
: 410 |
Release |
: 2014-08-20 |
ISBN-10 |
: 9781466569577 |
ISBN-13 |
: 1466569573 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Condensed Matter Optical Spectroscopy by : Iulian Ionita
Discover a Modern Approach to the Study of Molecular SymmetryClassroom-tested from an author experienced in teaching a course on condensed matter spectroscopy, and introductory spectroscopy and lasers, Condensed Matter Optical Spectroscopy: An Illustrated Introduction contains over 200 color illustrations and provides a clear overview of the field.
Author |
: Iulian Ionita |
Publisher |
: CRC Press |
Total Pages |
: 418 |
Release |
: 2014-08-20 |
ISBN-10 |
: 9781466569560 |
ISBN-13 |
: 1466569565 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Condensed Matter Optical Spectroscopy by : Iulian Ionita
Discover a Modern Approach to the Study of Molecular Symmetry Classroom-tested from an author experienced in teaching a course on condensed matter spectroscopy, and introductory spectroscopy and lasers, Condensed Matter Optical Spectroscopy: An Illustrated Introduction contains over 200 color illustrations and provides a clear overview of the field. Intended for undergraduate students in a variety of majors, this text presents the application of molecular symmetry on optical spectra (ultraviolet, visible, infrared, and Raman) through group theory, and uses numerous examples to illustrate practical theory applications. Recognize the Symmetry of Any Atomic Arrangement and the Point Group to Which It Belongs Divided into five chapters, this book is designed to help students choose a method or several methods for material characterization, measure a correct spectrum, and interpret the spectrum or correlate the spectra obtained using different methods. It includes solid-state active media for lasers, as well as coordination and organometallic complexes, minerals, and metal ions in biological systems, and also provides 3D representations. This book addresses: Classifying molecules according to their symmetry What happens when an ion of transition metal enters an environment with a given symmetry How atomic orbitals are involved in molecular bonding Whether the molecule is a rigid construction or a dynamic structure (which can either interact with light or not at all) How to perform a reliable spectrum measurement Condensed Matter Optical Spectroscopy: An Illustrated Introduction does not require any prior knowledge on group theory.
Author |
: C.H. Wang |
Publisher |
: Academic Press |
Total Pages |
: 386 |
Release |
: 1985-04-28 |
ISBN-10 |
: UCAL:B4164417 |
ISBN-13 |
: |
Rating |
: 4/5 (17 Downloads) |
Synopsis Spectroscopy of Condensed Media by : C.H. Wang
Spectroscopy of Condensed Media: Dynamics of Molecular Interactions discusses the use of molecular spectroscopy (including nuclear magnetic resonance [NMR] and nonlinear optical spectroscopy) in dynamic processes in condensed molecular systems. The book reviews relationship between transition probability and the time-correlation function of an isotropic electric dipole system, linear-response theory, and light scattering resulting from the translational motion of molecules in fluids. The text describes molecular rotation, theories of angular momentum, nuclear magnetic resonance, and spontaneous and coherent Raman effects. Closely related with the Raman and Brillouin scattering are vibrational dephasing, relaxation processes, and dynamics of phase transition solids. The book highlights the advantages of using NMR and also explains the basic concepts, such as local field, spin temperature, and effective Hamiltonians, that are employed in interpreting NMR experiments. The investigator can use nonlinear optical spectroscopy to study condensed matter. The text also cites two methods in which the investigator can control the time-dependent average Hamiltonian by (1) manipulating the intensity, timing, phase of the pulses, or (2) by sample spinning. The book is intended for advanced graduate students in physical chemistry that will equally benefit both investigators and scientists involved in physics research.
Author |
: A.A. Kaplyanskii |
Publisher |
: Elsevier |
Total Pages |
: 767 |
Release |
: 2012-12-02 |
ISBN-10 |
: 9780444598271 |
ISBN-13 |
: 0444598278 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Spectroscopy of Crystals Containing Rare Earth Ions by : A.A. Kaplyanskii
``Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.
Author |
: Martin Dressel |
Publisher |
: Cambridge University Press |
Total Pages |
: 490 |
Release |
: 2002-01-17 |
ISBN-10 |
: 0521597269 |
ISBN-13 |
: 9780521597265 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Electrodynamics of Solids by : Martin Dressel
The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.
Author |
: Friedhelm Bechstedt |
Publisher |
: Springer |
Total Pages |
: 596 |
Release |
: 2014-12-01 |
ISBN-10 |
: 9783662445938 |
ISBN-13 |
: 366244593X |
Rating |
: 4/5 (38 Downloads) |
Synopsis Many-Body Approach to Electronic Excitations by : Friedhelm Bechstedt
The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.
Author |
: Paul R. Berman |
Publisher |
: Princeton University Press |
Total Pages |
: 538 |
Release |
: 2010-12-13 |
ISBN-10 |
: 9781400837045 |
ISBN-13 |
: 1400837049 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Principles of Laser Spectroscopy and Quantum Optics by : Paul R. Berman
Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
Author |
: Mildred S. Dresselhaus |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 576 |
Release |
: 2007-12-18 |
ISBN-10 |
: 9783540328995 |
ISBN-13 |
: 3540328998 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Group Theory by : Mildred S. Dresselhaus
This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.
Author |
: Alexander Altland |
Publisher |
: Cambridge University Press |
Total Pages |
: 785 |
Release |
: 2010-03-11 |
ISBN-10 |
: 9780521769754 |
ISBN-13 |
: 0521769752 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Condensed Matter Field Theory by : Alexander Altland
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Author |
: W.C.K. Poon |
Publisher |
: CRC Press |
Total Pages |
: 340 |
Release |
: 2006-01-13 |
ISBN-10 |
: 9781420003338 |
ISBN-13 |
: 142000333X |
Rating |
: 4/5 (38 Downloads) |
Synopsis Soft Condensed Matter Physics in Molecular and Cell Biology by : W.C.K. Poon
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system