Computing The Electrical Activity In The Heart
Download Computing The Electrical Activity In The Heart full books in PDF, epub, and Kindle. Read online free Computing The Electrical Activity In The Heart ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Joakim Sundnes |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 323 |
Release |
: 2007-06-26 |
ISBN-10 |
: 9783540334378 |
ISBN-13 |
: 3540334378 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Computing the Electrical Activity in the Heart by : Joakim Sundnes
This book describes mathematical models and numerical techniques for simulating the electrical activity in the heart. It gives an introduction to the most important models, followed by a detailed description of numerical techniques. Particular focus is on efficient numerical methods for large scale simulations on both scalar and parallel computers. The results presented in the book will be of particular interest to researchers in bioengineering and computational biology.
Author |
: Euan A. Ashley |
Publisher |
: Remedica |
Total Pages |
: 258 |
Release |
: 2004 |
ISBN-10 |
: 9781901346220 |
ISBN-13 |
: 1901346226 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Cardiology Explained by : Euan A. Ashley
One of the most time-consuming tasks in clinical medicine is seeking the opinions of specialist colleagues. There is a pressure not only to make referrals appropriate but also to summarize the case in the language of the specialist. This book explains basic physiologic and pathophysiologic mechanisms of cardiovascular disease in a straightforward manner, gives guidelines as to when referral is appropriate, and, uniquely, explains what the specialist is likely to do. It is ideal for any hospital doctor, generalist, or even senior medical student who may need a cardiology opinion, or for that ma.
Author |
: Spyretta Golemati |
Publisher |
: Springer |
Total Pages |
: 354 |
Release |
: 2019-02-12 |
ISBN-10 |
: 9789811050923 |
ISBN-13 |
: 9811050929 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Cardiovascular Computing—Methodologies and Clinical Applications by : Spyretta Golemati
This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.
Author |
: Hans Petter Langtangen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 704 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662011706 |
ISBN-13 |
: 3662011700 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Computational Partial Differential Equations by : Hans Petter Langtangen
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Author |
: Andrew Pullan |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 442 |
Release |
: 2005-09-07 |
ISBN-10 |
: 9789813106567 |
ISBN-13 |
: 9813106565 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Mathematically Modelling The Electrical Activity Of The Heart: From Cell To Body Surface And Back Again by : Andrew Pullan
This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad — it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.
Author |
: Are Magnus Bruaset |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 491 |
Release |
: 2006-03-05 |
ISBN-10 |
: 9783540316190 |
ISBN-13 |
: 3540316191 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Numerical Solution of Partial Differential Equations on Parallel Computers by : Are Magnus Bruaset
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.
Author |
: Maria S. Guillem |
Publisher |
: Frontiers Media SA |
Total Pages |
: 178 |
Release |
: 2020-04-17 |
ISBN-10 |
: 9782889636716 |
ISBN-13 |
: 2889636712 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Electrocardiographic Imaging by : Maria S. Guillem
Electrical activity in the myocardium coordinates the contraction of the heart, and its knowledge could lead to a better understanding, diagnosis, and treatment of cardiac diseases. This electrical activity generates an electromagnetic field that propagates outside the heart and reaches the human torso surface, where it can be easily measured. Classical electrocardiography aims to interpret the 12-lead electrocardiogram (ECG) to determine cardiac activity and support the diagnosis of cardiac pathologies such as arrhythmias, altered activations, and ischemia. More recently, a higher number of leads is used to reconstruct a more detailed quantitative description of the electrical activity in the heart by solving the so-called inverse problem of electrocardiography. This technique is known as ECG imaging. Today, clinical applications of ECG imaging are showing promising results in guiding a variety of electrophysiological interventions such as catheter ablation of atrial fibrillation and ventricular tachycardia. However, in order to promote the adoption of ECG imaging in the routine clinical practice, further research is required regarding more accurate mathematical methods, further scientific validation under different preclinical scenarios and a more extensive clinical validation
Author |
: Nenad Filipovic |
Publisher |
: John Wiley & Sons |
Total Pages |
: 386 |
Release |
: 2021-12-14 |
ISBN-10 |
: 9781119563945 |
ISBN-13 |
: 1119563941 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Computational Modeling and Simulation Examples in Bioengineering by : Nenad Filipovic
A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.
Author |
: Aslak Tveito |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 471 |
Release |
: 2010-09-24 |
ISBN-10 |
: 9783642112997 |
ISBN-13 |
: 3642112994 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Elements of Scientific Computing by : Aslak Tveito
Science used to be experiments and theory, now it is experiments, theory and computations. The computational approach to understanding nature and technology is currently flowering in many fields such as physics, geophysics, astrophysics, chemistry, biology, and most engineering disciplines. This book is a gentle introduction to such computational methods where the techniques are explained through examples. It is our goal to teach principles and ideas that carry over from field to field. You will learn basic methods and how to implement them. In order to gain the most from this text, you will need prior knowledge of calculus, basic linear algebra and elementary programming.
Author |
: Frances Ashcroft |
Publisher |
: W. W. Norton & Company |
Total Pages |
: 367 |
Release |
: 2012-09-24 |
ISBN-10 |
: 9780393089547 |
ISBN-13 |
: 0393089541 |
Rating |
: 4/5 (47 Downloads) |
Synopsis The Spark of Life: Electricity in the Human Body by : Frances Ashcroft
"This is a wonderful book. Frances Ashcroft has a rare gift for making difficult subjects accessible and fascinating." —Bill Bryson, author of The Body: A Guide for Occupants What happens during a heart attack? Can someone really die of fright? What is death, anyway? How does electroshock treatment affect the brain? What is consciousness? The answers to these questions lie in the electrical signals constantly traveling through our bodies, driving our thoughts, our movements, and even the beating of our hearts. The history of how scientists discovered the role of electricity in the human body is a colorful one, filled with extraordinary personalities, fierce debates, and brilliant experiments. Moreover, present-day research on electricity and ion channels has created one of the most exciting fields in science, shedding light on conditions ranging from diabetes and allergies to cystic fibrosis, migraines, and male infertility. With inimitable wit and a clear, fresh voice, award-winning researcher Frances Ashcroft weaves together compelling real-life stories with the latest scientific findings, giving us a spectacular account of the body electric.