Computational Space Flight Mechanics
Download Computational Space Flight Mechanics full books in PDF, epub, and Kindle. Read online free Computational Space Flight Mechanics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Claus Weiland |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 305 |
Release |
: 2010-06-29 |
ISBN-10 |
: 9783642135835 |
ISBN-13 |
: 3642135838 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Computational Space Flight Mechanics by : Claus Weiland
Themechanicsofspace?ightisan olddiscipline.Itstopicoriginallywasthemotion of planets, moons and other celestial bodies in gravitational ?elds. Kepler’s (1571 - 1630) observations and measurements have led to probably the ?rst mathematical description of planet’s motion. Newton (1642 - 1727) gave then, with the devel- ment of his principles of mechanics, the physical explanation of these motions. Since then man has started in the second half of the 20th centuryto capture ph- ically the Space in the sense that he did develop arti?cial celestial bodies, which he brought into Earth’s orbits, like satellites or space stations, or which he did send to planets or moons of our planetary system, like probes, or by which p- ple were brought to the moon and back, like capsules. Further he developed an advanced space transportation system, the U.S. Space Shuttle Orbiter, which is the only winged space vehicle ever in operation. In the last two and a half decades there were several activities in the world in order to succeed the U.S. Orbiter, like the HERMES project in Europe, the HOPE project in Japan, the X-33, X-34 and X-37 studies and demonstrators in the United States and the joint U.S. - European project X-38. However, all these projects were cancelled. The motion of these vehicles can be described by Newton’s equation of motion.
Author |
: Craig A. Kluever |
Publisher |
: John Wiley & Sons |
Total Pages |
: 879 |
Release |
: 2018-03-12 |
ISBN-10 |
: 9781119157847 |
ISBN-13 |
: 1119157846 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Space Flight Dynamics by : Craig A. Kluever
Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.
Author |
: Ashish Tewari |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 567 |
Release |
: 2007-11-15 |
ISBN-10 |
: 9780817644383 |
ISBN-13 |
: 0817644385 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Atmospheric and Space Flight Dynamics by : Ashish Tewari
This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.
Author |
: Thomas R. Yechout |
Publisher |
: AIAA |
Total Pages |
: 666 |
Release |
: 2003 |
ISBN-10 |
: 1600860788 |
ISBN-13 |
: 9781600860782 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Introduction to Aircraft Flight Mechanics by : Thomas R. Yechout
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Author |
: William Tyrrell Thomson |
Publisher |
: Courier Corporation |
Total Pages |
: 354 |
Release |
: 2012-09-11 |
ISBN-10 |
: 9780486140520 |
ISBN-13 |
: 0486140520 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Introduction to Space Dynamics by : William Tyrrell Thomson
Comprehensive, classic introduction to space-flight engineering for advanced undergraduate and graduate students provides basic tools for quantitative analysis of the motions of satellites and other vehicles in space.
Author |
: Bong Wie |
Publisher |
: AIAA |
Total Pages |
: 692 |
Release |
: 1998 |
ISBN-10 |
: 1563472619 |
ISBN-13 |
: 9781563472619 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Space Vehicle Dynamics and Control by : Bong Wie
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Author |
: Robert F. Stengel |
Publisher |
: Princeton University Press |
Total Pages |
: 914 |
Release |
: 2022-11-01 |
ISBN-10 |
: 9780691237046 |
ISBN-13 |
: 0691237042 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Flight Dynamics by : Robert F. Stengel
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Author |
: Howard D. Curtis |
Publisher |
: Elsevier |
Total Pages |
: 740 |
Release |
: 2009-10-26 |
ISBN-10 |
: 9780080887845 |
ISBN-13 |
: 0080887848 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Orbital Mechanics for Engineering Students by : Howard D. Curtis
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Author |
: Rama K. Yedavalli |
Publisher |
: John Wiley & Sons |
Total Pages |
: 554 |
Release |
: 2020-02-25 |
ISBN-10 |
: 9781118934456 |
ISBN-13 |
: 1118934458 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Flight Dynamics and Control of Aero and Space Vehicles by : Rama K. Yedavalli
Flight Vehicle Dynamics and Control Rama K. Yedavalli, The Ohio State University, USA A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint. The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design. Key features: Provides a comprehensive treatment of dynamics and control of various flight vehicles in a single volume. Contains worked out examples (including MATLAB examples) and end of chapter homework problems. Suitable as a single textbook for a sequence of undergraduate courses on flight vehicle dynamics and control. Accompanied by a website that includes additional problems and a solutions manual. The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.
Author |
: William E. Wiesel |
Publisher |
: McGraw-Hill Science, Engineering & Mathematics |
Total Pages |
: 360 |
Release |
: 1997 |
ISBN-10 |
: UCSD:31822026215160 |
ISBN-13 |
: |
Rating |
: 4/5 (60 Downloads) |
Synopsis Spaceflight Dynamics by : William E. Wiesel
Designed for undergraduate courses in spacecraft dynamics and orbital mechanics, this new edition offers a three-dimensional treatment of dynamics discussions of rigid body dynamics, rocket trajectories, and the space environment. An expert in his field, author William E. Wiesel presents a wealth of information in an easy-to-understand manner without the daunting mathematical rigor of graduate texts. Reference is made to actual flight vehicles and satellites to give students background on the type of work currently being done in this field.