Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 3540213112
ISBN-13 : 9783540213116
Rating : 4/5 (12 Downloads)

Synopsis Computational Methods in Commutative Algebra and Algebraic Geometry by : Wolmer Vasconcelos

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.

Commutative Algebra, Algebraic Geometry, and Computational Methods

Commutative Algebra, Algebraic Geometry, and Computational Methods
Author :
Publisher : Springer
Total Pages : 346
Release :
ISBN-10 : UOM:39015056636189
ISBN-13 :
Rating : 4/5 (89 Downloads)

Synopsis Commutative Algebra, Algebraic Geometry, and Computational Methods by : David Eisenbud

This volume contains papers presented at the International Conference on Commutative Algebra, Algebraic geometry, and Computational methods held in Hanoi in 1996, as well as papers written subsequently. It features both expository articles as well as research papers on a range of currently active areas in commutative algebra, algebraic geometry (particularly surveys on intersection theory) and combinatorics. In addition, a special feature is a section on the life and work of Wolfgang Vogel, who was an organiser of the conference.

Gröbner Bases

Gröbner Bases
Author :
Publisher : Springer Science & Business Media
Total Pages : 587
Release :
ISBN-10 : 9781461209133
ISBN-13 : 1461209137
Rating : 4/5 (33 Downloads)

Synopsis Gröbner Bases by : Thomas Becker

The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method.

Introduction To Commutative Algebra

Introduction To Commutative Algebra
Author :
Publisher : CRC Press
Total Pages : 140
Release :
ISBN-10 : 9780429973260
ISBN-13 : 0429973268
Rating : 4/5 (60 Downloads)

Synopsis Introduction To Commutative Algebra by : Michael F. Atiyah

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.

Commutative Algebra

Commutative Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 784
Release :
ISBN-10 : 9781461253501
ISBN-13 : 1461253500
Rating : 4/5 (01 Downloads)

Synopsis Commutative Algebra by : David Eisenbud

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Computational Commutative Algebra 1

Computational Commutative Algebra 1
Author :
Publisher : Springer Science & Business Media
Total Pages : 325
Release :
ISBN-10 : 9783540677338
ISBN-13 : 354067733X
Rating : 4/5 (38 Downloads)

Synopsis Computational Commutative Algebra 1 by : Martin Kreuzer

This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.

Using Algebraic Geometry

Using Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 513
Release :
ISBN-10 : 9781475769111
ISBN-13 : 1475769113
Rating : 4/5 (11 Downloads)

Synopsis Using Algebraic Geometry by : David A. Cox

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Introduction to Commutative Algebra and Algebraic Geometry

Introduction to Commutative Algebra and Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 253
Release :
ISBN-10 : 9781461459873
ISBN-13 : 1461459877
Rating : 4/5 (73 Downloads)

Synopsis Introduction to Commutative Algebra and Algebraic Geometry by : Ernst Kunz

Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.

Computational Algebra: Course And Exercises With Solutions

Computational Algebra: Course And Exercises With Solutions
Author :
Publisher : World Scientific
Total Pages : 283
Release :
ISBN-10 : 9789811238260
ISBN-13 : 981123826X
Rating : 4/5 (60 Downloads)

Synopsis Computational Algebra: Course And Exercises With Solutions by : Ihsen Yengui

This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.

Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642589510
ISBN-13 : 9783642589515
Rating : 4/5 (10 Downloads)

Synopsis Computational Methods in Commutative Algebra and Algebraic Geometry by : Wolmer Vasconcelos

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.