Computational Intelligence Evolutionary Computing And Evolutionary Clustering Algorithms
Download Computational Intelligence Evolutionary Computing And Evolutionary Clustering Algorithms full books in PDF, epub, and Kindle. Read online free Computational Intelligence Evolutionary Computing And Evolutionary Clustering Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Xin-She Yang |
Publisher |
: Springer |
Total Pages |
: 295 |
Release |
: 2014-12-27 |
ISBN-10 |
: 9783319138268 |
ISBN-13 |
: 331913826X |
Rating |
: 4/5 (68 Downloads) |
Synopsis Recent Advances in Swarm Intelligence and Evolutionary Computation by : Xin-She Yang
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.
Author |
: Seyedali Mirjalili |
Publisher |
: Springer |
Total Pages |
: 164 |
Release |
: 2018-06-26 |
ISBN-10 |
: 9783319930251 |
ISBN-13 |
: 3319930257 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Author |
: Terje Kristensen |
Publisher |
: Bentham Science Publishers |
Total Pages |
: 135 |
Release |
: 2016-09-30 |
ISBN-10 |
: 9781681082998 |
ISBN-13 |
: 1681082993 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Computational Intelligence, Evolutionary Computing and Evolutionary Clustering Algorithms by : Terje Kristensen
This brief text presents a general guideline for writing advanced algorithms for solving engineering and data visualization problems. The book starts with an introduction to the concept of evolutionary algorithms followed by details on clustering and evolutionary programming. Subsequent chapters present information on aspects of computer system design, implementation and data visualization. The book concludes with notes on the possible applications of evolutionary algorithms in the near future. This book is intended as a supplementary guide for students and technical apprentices learning machine language, or participating in advanced software programming, design and engineering courses.
Author |
: Fabio Caraffini |
Publisher |
: MDPI |
Total Pages |
: 286 |
Release |
: 2020-11-25 |
ISBN-10 |
: 9783039434541 |
ISBN-13 |
: 3039434543 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Evolutionary Computation & Swarm Intelligence by : Fabio Caraffini
The vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.
Author |
: James M. Keller |
Publisher |
: John Wiley & Sons |
Total Pages |
: 378 |
Release |
: 2016-07-13 |
ISBN-10 |
: 9781119214366 |
ISBN-13 |
: 111921436X |
Rating |
: 4/5 (66 Downloads) |
Synopsis Fundamentals of Computational Intelligence by : James M. Keller
Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.
Author |
: Ibrahim Aljarah |
Publisher |
: Springer Nature |
Total Pages |
: 248 |
Release |
: 2021-02-20 |
ISBN-10 |
: 9789813341913 |
ISBN-13 |
: 9813341912 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Evolutionary Data Clustering: Algorithms and Applications by : Ibrahim Aljarah
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
Author |
: Pedro Domingos |
Publisher |
: Basic Books |
Total Pages |
: 354 |
Release |
: 2015-09-22 |
ISBN-10 |
: 9780465061921 |
ISBN-13 |
: 0465061923 |
Rating |
: 4/5 (21 Downloads) |
Synopsis The Master Algorithm by : Pedro Domingos
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Author |
: Alex A. Freitas |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 272 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9783662049235 |
ISBN-13 |
: 3662049236 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Data Mining and Knowledge Discovery with Evolutionary Algorithms by : Alex A. Freitas
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Author |
: Crina Grosan |
Publisher |
: Springer |
Total Pages |
: 410 |
Release |
: 2007-08-29 |
ISBN-10 |
: 9783540732976 |
ISBN-13 |
: 3540732977 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Hybrid Evolutionary Algorithms by : Crina Grosan
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Author |
: Xinjie Yu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 427 |
Release |
: 2010-06-10 |
ISBN-10 |
: 9781849961295 |
ISBN-13 |
: 1849961298 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Introduction to Evolutionary Algorithms by : Xinjie Yu
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.