Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition
Author :
Publisher : CRC Press
Total Pages : 828
Release :
ISBN-10 : 156032046X
ISBN-13 : 9781560320463
Rating : 4/5 (6X Downloads)

Synopsis Computational Fluid Mechanics and Heat Transfer, Second Edition by : Richard H. Pletcher

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.

Computational Fluid Mechanics and Heat Transfer

Computational Fluid Mechanics and Heat Transfer
Author :
Publisher : CRC Press
Total Pages : 975
Release :
ISBN-10 : 9781351124010
ISBN-13 : 1351124013
Rating : 4/5 (10 Downloads)

Synopsis Computational Fluid Mechanics and Heat Transfer by : Dale Anderson

Computational Fluid Mechanics and Heat Transfer, Fourth Edition is a fully updated version of the classic text on finite-difference and finite-volume computational methods. Divided into two parts, the text covers essential concepts in the first part, and then moves on to fluids equations in the second. Designed as a valuable resource for practitioners and students, new examples and homework problems have been added to further enhance the student’s understanding of the fundamentals and applications. Provides a thoroughly updated presentation of CFD and computational heat transfer Covers more material than other texts, organized for classroom instruction and self-study Presents a wide range of computation strategies for fluid flow and heat transfer Includes new sections on finite element methods, computational heat transfer, and multiphase flows Features a full Solutions Manual and Figure Slides for classroom projection Written as an introductory text for advanced undergraduates and first-year graduate students, the new edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer.

Computational Fluid Mechanics and Heat Transfer, Third Edition

Computational Fluid Mechanics and Heat Transfer, Third Edition
Author :
Publisher : CRC Press
Total Pages : 777
Release :
ISBN-10 : 9781591690375
ISBN-13 : 1591690374
Rating : 4/5 (75 Downloads)

Synopsis Computational Fluid Mechanics and Heat Transfer, Third Edition by : Richard H. Pletcher

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.

Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer
Author :
Publisher : WIT Press
Total Pages : 513
Release :
ISBN-10 : 9781845641443
ISBN-13 : 1845641442
Rating : 4/5 (43 Downloads)

Synopsis Computational Fluid Dynamics and Heat Transfer by : Ryoichi Amano

Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.

Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow
Author :
Publisher : CRC Press
Total Pages : 218
Release :
ISBN-10 : 9781351991513
ISBN-13 : 1351991515
Rating : 4/5 (13 Downloads)

Synopsis Numerical Heat Transfer and Fluid Flow by : Suhas Patankar

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Author :
Publisher : Springer Science & Business Media
Total Pages : 587
Release :
ISBN-10 : 9781846282058
ISBN-13 : 1846282055
Rating : 4/5 (58 Downloads)

Synopsis Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer by : Ben Q. Li

Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics
Author :
Publisher : Springer Nature
Total Pages : 355
Release :
ISBN-10 : 9783030728847
ISBN-13 : 3030728846
Rating : 4/5 (47 Downloads)

Synopsis Introduction to Computational Fluid Dynamics by : Atul Sharma

This more-of-physics, less-of-math, insightful and comprehensive book simplifies computational fluid dynamics for readers with little knowledge or experience in heat transfer, fluid dynamics or numerical methods. The novelty of this book lies in the simplification of the level of mathematics in CFD by presenting physical law (instead of the traditional differential equations) and discrete (independent of continuous) math-based algebraic formulations. Another distinguishing feature of this book is that it effectively links theory with computer program (code). This is done with pictorial as well as detailed explanations of implementation of the numerical methodology. It also includes pedagogical aspects such as end-of-chapter problems and carefully designed examples to augment learning in CFD code-development, application and analysis. This book is a valuable resource for students in the fields of mechanical, chemical or aeronautical engineering.

Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer
Author :
Publisher : CRC Press
Total Pages : 696
Release :
ISBN-10 : 9781498703758
ISBN-13 : 1498703755
Rating : 4/5 (58 Downloads)

Synopsis Computational Fluid Dynamics and Heat Transfer by : Pradip Majumdar

This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.