Computability of Julia Sets

Computability of Julia Sets
Author :
Publisher : Springer Science & Business Media
Total Pages : 158
Release :
ISBN-10 : 9783540685470
ISBN-13 : 3540685472
Rating : 4/5 (70 Downloads)

Synopsis Computability of Julia Sets by : Mark Braverman

Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge (most of it from the authors' own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems.

Computability and Complexity

Computability and Complexity
Author :
Publisher : MIT Press
Total Pages : 494
Release :
ISBN-10 : 0262100649
ISBN-13 : 9780262100649
Rating : 4/5 (49 Downloads)

Synopsis Computability and Complexity by : Neil D. Jones

Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series

Handbook of Computability and Complexity in Analysis

Handbook of Computability and Complexity in Analysis
Author :
Publisher : Springer Nature
Total Pages : 427
Release :
ISBN-10 : 9783030592349
ISBN-13 : 3030592340
Rating : 4/5 (49 Downloads)

Synopsis Handbook of Computability and Complexity in Analysis by : Vasco Brattka

Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This handbook represents the first coherent cross-section through most active research topics on the more theoretical side of the field. It contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. All chapters are written by leading experts working at the cutting edge of the respective topic. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, and a wealth of information and references that will help them to navigate the modern research literature in this field.

The Computational Beauty of Nature

The Computational Beauty of Nature
Author :
Publisher : MIT Press
Total Pages : 524
Release :
ISBN-10 : 0262561271
ISBN-13 : 9780262561273
Rating : 4/5 (71 Downloads)

Synopsis The Computational Beauty of Nature by : Gary William Flake

Gary William Flake develops in depth the simple idea that recurrent rules can produce rich and complicated behaviors. In this book Gary William Flake develops in depth the simple idea that recurrent rules can produce rich and complicated behaviors. Distinguishing "agents" (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as "beautiful" and "interesting." From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation. Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.

Computable Structure Theory

Computable Structure Theory
Author :
Publisher : Cambridge University Press
Total Pages : 214
Release :
ISBN-10 : 9781108534420
ISBN-13 : 1108534422
Rating : 4/5 (20 Downloads)

Synopsis Computable Structure Theory by : Antonio Montalbán

In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.

Computability Theory

Computability Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 218
Release :
ISBN-10 : 9780821873922
ISBN-13 : 082187392X
Rating : 4/5 (22 Downloads)

Synopsis Computability Theory by : Rebecca Weber

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

Recent Developments in Fractal Geometry and Dynamical Systems

Recent Developments in Fractal Geometry and Dynamical Systems
Author :
Publisher : American Mathematical Society
Total Pages : 270
Release :
ISBN-10 : 9781470472160
ISBN-13 : 1470472163
Rating : 4/5 (60 Downloads)

Synopsis Recent Developments in Fractal Geometry and Dynamical Systems by : Sangita Jha

This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.

Complex Dynamics

Complex Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 181
Release :
ISBN-10 : 9781461243649
ISBN-13 : 1461243645
Rating : 4/5 (49 Downloads)

Synopsis Complex Dynamics by : Lennart Carleson

A discussion of the properties of conformal mappings in the complex plane, closely related to the study of fractals and chaos. Indeed, the book ends in a detailed study of the famous Mandelbrot set, which describes very general properties of such mappings. Focusing on the analytic side of this contemporary subject, the text was developed from a course taught over several semesters and aims to help students and instructors to familiarize themselves with complex dynamics. Topics covered include: conformal and quasi-conformal mappings, fixed points and conjugations, basic rational iteration, classification of periodic components, critical points and expanding maps, some applications of conformal mappings, the local geometry of the Fatou set, and quadratic polynomials and the Mandelbrot set.

The Collected Papers of Stephen Smale

The Collected Papers of Stephen Smale
Author :
Publisher : World Scientific
Total Pages : 532
Release :
ISBN-10 : 9810249918
ISBN-13 : 9789810249915
Rating : 4/5 (18 Downloads)

Synopsis The Collected Papers of Stephen Smale by : Stephen Smale

This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.

Computable Analysis

Computable Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 312
Release :
ISBN-10 : 3540668179
ISBN-13 : 9783540668176
Rating : 4/5 (79 Downloads)

Synopsis Computable Analysis by : Klaus Weihrauch

Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid fundament for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.