Complex-Valued Neural Networks with Multi-Valued Neurons

Complex-Valued Neural Networks with Multi-Valued Neurons
Author :
Publisher : Springer
Total Pages : 273
Release :
ISBN-10 : 9783642203534
ISBN-13 : 3642203531
Rating : 4/5 (34 Downloads)

Synopsis Complex-Valued Neural Networks with Multi-Valued Neurons by : Igor Aizenberg

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

Multi-Valued and Universal Binary Neurons

Multi-Valued and Universal Binary Neurons
Author :
Publisher : Springer Science & Business Media
Total Pages : 274
Release :
ISBN-10 : 9781475731156
ISBN-13 : 1475731159
Rating : 4/5 (56 Downloads)

Synopsis Multi-Valued and Universal Binary Neurons by : Igor Aizenberg

Multi-Valued and Universal Binary Neurons deals with two new types of neurons: multi-valued neurons and universal binary neurons. These neurons are based on complex number arithmetic and are hence much more powerful than the typical neurons used in artificial neural networks. Therefore, networks with such neurons exhibit a broad functionality. They can not only realise threshold input/output maps but can also implement any arbitrary Boolean function. Two learning methods are presented whereby these networks can be trained easily. The broad applicability of these networks is proven by several case studies in different fields of application: image processing, edge detection, image enhancement, super resolution, pattern recognition, face recognition, and prediction. The book is hence partitioned into three almost equally sized parts: a mathematical study of the unique features of these new neurons, learning of networks of such neurons, and application of such neural networks. Most of this work was developed by the first two authors over a period of more than 10 years and was only available in the Russian literature. With this book we present the first comprehensive treatment of this important class of neural networks in the open Western literature. Multi-Valued and Universal Binary Neurons is intended for anyone with a scholarly interest in neural network theory, applications and learning. It will also be of interest to researchers and practitioners in the fields of image processing, pattern recognition, control and robotics.

Complex-valued Neural Networks

Complex-valued Neural Networks
Author :
Publisher : World Scientific
Total Pages : 387
Release :
ISBN-10 : 9789812384645
ISBN-13 : 9812384642
Rating : 4/5 (45 Downloads)

Synopsis Complex-valued Neural Networks by : Akira Hirose

In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.

Complex-Valued Neural Networks with Multi-Valued Neurons

Complex-Valued Neural Networks with Multi-Valued Neurons
Author :
Publisher : Springer Science & Business Media
Total Pages : 273
Release :
ISBN-10 : 9783642203527
ISBN-13 : 3642203523
Rating : 4/5 (27 Downloads)

Synopsis Complex-Valued Neural Networks with Multi-Valued Neurons by : Igor Aizenberg

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

Complex-Valued Neural Networks

Complex-Valued Neural Networks
Author :
Publisher : John Wiley & Sons
Total Pages : 238
Release :
ISBN-10 : 9781118590065
ISBN-13 : 1118590066
Rating : 4/5 (65 Downloads)

Synopsis Complex-Valued Neural Networks by : Akira Hirose

Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and superconducting waves. This fact is a critical advantage in practical applications in diverse fields of engineering, where signals are routinely analyzed and processed in time/space, frequency, and phase domains. Complex-Valued Neural Networks: Advances and Applications covers cutting-edge topics and applications surrounding this timely subject. Demonstrating advanced theories with a wide range of applications, including communication systems, image processing systems, and brain-computer interfaces, this text offers comprehensive coverage of: Conventional complex-valued neural networks Quaternionic neural networks Clifford-algebraic neural networks Presented by international experts in the field, Complex-Valued Neural Networks: Advances and Applications is ideal for advanced-level computational intelligence theorists, electromagnetic theorists, and mathematicians interested in computational intelligence, artificial intelligence, machine learning theories, and algorithms.

Supervised Learning with Complex-valued Neural Networks

Supervised Learning with Complex-valued Neural Networks
Author :
Publisher : Springer
Total Pages : 182
Release :
ISBN-10 : 9783642294914
ISBN-13 : 364229491X
Rating : 4/5 (14 Downloads)

Synopsis Supervised Learning with Complex-valued Neural Networks by : Sundaram Suresh

Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.

Complex-valued Neural Networks: Theories And Applications

Complex-valued Neural Networks: Theories And Applications
Author :
Publisher : World Scientific
Total Pages : 387
Release :
ISBN-10 : 9789814485371
ISBN-13 : 9814485373
Rating : 4/5 (71 Downloads)

Synopsis Complex-valued Neural Networks: Theories And Applications by : Akira Hirose

In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.

Complex-Valued Neural Networks Systems with Time Delay

Complex-Valued Neural Networks Systems with Time Delay
Author :
Publisher : Springer Nature
Total Pages : 236
Release :
ISBN-10 : 9789811954504
ISBN-13 : 981195450X
Rating : 4/5 (04 Downloads)

Synopsis Complex-Valued Neural Networks Systems with Time Delay by : Ziye Zhang

This book provides up-to-date developments in the stability analysis and (anti-)synchronization control area for complex-valued neural networks systems with time delay. It brings out the characteristic systematism in them and points out further insight to solve relevant problems. It presents a comprehensive, up-to-date, and detailed treatment of dynamical behaviors including stability analysis and (anti-)synchronization control. The materials included in the book are mainly based on the recent research work carried on by the authors in this domain. The book is a useful reference for all those from senior undergraduates, graduate students, to senior researchers interested in or working with control theory, applied mathematics, system analysis and integration, automation, nonlinear science, computer and other related fields, especially those relevant scientific and technical workers in the research of complex-valued neural network systems, dynamic systems, and intelligent control theory.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining
Author :
Publisher : Springer Nature
Total Pages : 563
Release :
ISBN-10 : 9783031333743
ISBN-13 : 3031333748
Rating : 4/5 (43 Downloads)

Synopsis Advances in Knowledge Discovery and Data Mining by : Hisashi Kashima

The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25–28, 2023. The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.

Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing

Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing
Author :
Publisher : Springer
Total Pages : 381
Release :
ISBN-10 : 9783319483177
ISBN-13 : 331948317X
Rating : 4/5 (77 Downloads)

Synopsis Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing by : Rudolf Seising

The book is an authoritative collection of contributions by leading experts on the topics of fuzzy logic, multi-valued logic and neural network. Originally written as an homage to Claudio Moraga, seen by his colleagues as an example of concentration, discipline and passion for science, the book also represents a timely reference guide for advance students and researchers in the field of soft computing, and multiple-valued logic.