Combined Cooling Heating And Power Systems
Download Combined Cooling Heating And Power Systems full books in PDF, epub, and Kindle. Read online free Combined Cooling Heating And Power Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Yang Shi |
Publisher |
: John Wiley & Sons |
Total Pages |
: 195 |
Release |
: 2017-09-05 |
ISBN-10 |
: 9781119283355 |
ISBN-13 |
: 1119283353 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Combined Cooling, Heating, and Power Systems by : Yang Shi
A comprehensive review of state-of-the-art CCHP modeling, optimization, and operation theory and practice This book was written by an international author team at the forefront of combined cooling, heating, and power (CCHP) systems R&D. It offers systematic coverage of state-of-the-art mathematical modeling, structure optimization, and CCHP system operation, supplemented with numerous illustrative case studies and examples. CCHP systems are an exciting emerging energy technology offering significant economic and environmental benefits. Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a timely response to ongoing efforts to maximize the efficiency of that technology. It begins with a survey of CCHP systems from the technological and societal perspectives, offering readers a broad and stimulating overview of the field. It then digs down into topics crucial for optimal CCHP operation. Discussions of each topic are carefully structured, walking readers from introduction and background to technical details. A set of new methodologies for the modeling, optimization and control of CCHP systems are presented within a unified framework. And the authors demonstrate innovative solutions to a variety of CCHP systems problems using new approaches to optimal power flow, load forecasting, and system operation design. Provides a comprehensive review of state-of-the-art of CCHP system development Presents new methodologies for mathematical modeling, optimization, and advanced control Combines theoretical rigor with real-world application perspectives Features numerous examples demonstrating an array of new design strategies Reflects the combined experience of veteran researchers in the field whose contributions are well recognized within the energy community Offers excellent background reading for students currently enrolled in the growing number of courses on energy systems at universities worldwide Timely, authoritative, and offering a balanced presentation of theory and practice, Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a valuable resource forresearchers, design practitioners, and graduate students in the areas of control theory, energy management, and energy systems design.
Author |
: Masood Ebrahimi |
Publisher |
: Elsevier |
Total Pages |
: 219 |
Release |
: 2014-10-08 |
ISBN-10 |
: 9780080999920 |
ISBN-13 |
: 0080999921 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Combined Cooling, Heating and Power by : Masood Ebrahimi
A professional reference title written primarily for researchers in thermal engineering, Combined Cooling, Heating and Power: Decision-Making, Design and Optimization summarizes current research on decision-making and optimization in combined cooling, heating, and power (CCHP) systems. The authors provide examples of using these decision-making tools with five examples that run throughout the book. - Offers a unique emphasis on newer techniques in decision-making - Provides examples of decision-making tools with five examples that run throughout the book
Author |
: Francesco Calise |
Publisher |
: Academic Press |
Total Pages |
: 453 |
Release |
: 2021-09-22 |
ISBN-10 |
: 9780128206263 |
ISBN-13 |
: 0128206268 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Polygeneration Systems by : Francesco Calise
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results
Author |
: R Beith |
Publisher |
: Elsevier |
Total Pages |
: 553 |
Release |
: 2011-04-30 |
ISBN-10 |
: 9780857092755 |
ISBN-13 |
: 0857092758 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Small and Micro Combined Heat and Power (CHP) Systems by : R Beith
Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance.Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems.Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology.With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. - Reviews small- and micro-CHP systems and their techno-economic and performance assessment - Explores integration into distributed energy systems and their increasing utilisation of biomass fuels - Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines
Author |
: Ibrahim Dincer |
Publisher |
: Academic Press |
Total Pages |
: 1136 |
Release |
: 2017-10-06 |
ISBN-10 |
: 9780128137352 |
ISBN-13 |
: 0128137355 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Exergetic, Energetic and Environmental Dimensions by : Ibrahim Dincer
This edited book looks at recent studies on interdisciplinary research related to exergy, energy, and the environment. This topic is of prime significance – there is a strong need for practical solutions through better design, analysis and assessment in order to achieve better efficiency, environment and sustainability. Exergetic, Energetic and Environmental Dimensions covers a number of topics ranging from thermodynamic optimization of energy systems, to the environmental impact assessment and clean energy, offering readers a comprehensive reference on analysis, modeling, development, experimental investigation, and improvement of many micro to macro systems and applications, ranging from basic to advanced categories. Its comprehensive content includes: - Comprehensive coverage of development of systems considering exergy, energy, and environmental issues, along with the most up-to-date information in the area, plus recent developments - New developments in the area of exergy, including recent debate involving the shaping of future directions and priorities for better environment, sustainable development and energy security - Provides a number of illustrative examples, practical applications, and case studies - Introduces recently developed technological and strategic solutions and engineering applications for professionals in the area - Provides numerous engineering examples and applications on exergy - Offers a variety of problems that foster critical thinking and skill development
Author |
: Ibrahim Dincer |
Publisher |
: Academic Press |
Total Pages |
: 657 |
Release |
: 2014-07-15 |
ISBN-10 |
: 9780123838612 |
ISBN-13 |
: 0123838614 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Advanced Power Generation Systems by : Ibrahim Dincer
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Author |
: Neil Petchers |
Publisher |
: The Fairmont Press, Inc. |
Total Pages |
: 888 |
Release |
: 2003 |
ISBN-10 |
: 9780881734331 |
ISBN-13 |
: 0881734330 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Combined Heating, Cooling & Power Handbook by : Neil Petchers
Author |
: Paul Breeze |
Publisher |
: Elsevier |
Total Pages |
: 289 |
Release |
: 2005-02-04 |
ISBN-10 |
: 9780080480107 |
ISBN-13 |
: 0080480101 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Power Generation Technologies by : Paul Breeze
This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system
Author |
: Pavel Tsvetkov |
Publisher |
: BoD – Books on Demand |
Total Pages |
: 232 |
Release |
: 2018-09-12 |
ISBN-10 |
: 9781789237108 |
ISBN-13 |
: 1789237106 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Energy Systems and Environment by : Pavel Tsvetkov
This book looks at environmental aspects of energy technologies, from common traditional sources in use, new sources, and emerging sources and technologies. The objective of this book is to serve as a one-stop comprehensive information resource on energy and environment topics, from energy science to energy engineering to energy politics. Starting with science and technology topics we link them to economics and politics showcasing interconnections between energy sources, energy utilization, energy conversion, and sustainability under the common theme of energy and environment. The book achieves its objective by offering and integrating deeply technical and socioeconomics papers together on energy and environment topics.
Author |
: Yang Shi |
Publisher |
: John Wiley & Sons |
Total Pages |
: 199 |
Release |
: 2017-06-15 |
ISBN-10 |
: 9781119283379 |
ISBN-13 |
: 111928337X |
Rating |
: 4/5 (79 Downloads) |
Synopsis Combined Cooling, Heating, and Power Systems by : Yang Shi
A comprehensive review of state-of-the-art CCHP modeling, optimization, and operation theory and practice This book was written by an international author team at the forefront of combined cooling, heating, and power (CCHP) systems R&D. It offers systematic coverage of state-of-the-art mathematical modeling, structure optimization, and CCHP system operation, supplemented with numerous illustrative case studies and examples. CCHP systems are an exciting emerging energy technology offering significant economic and environmental benefits. Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a timely response to ongoing efforts to maximize the efficiency of that technology. It begins with a survey of CCHP systems from the technological and societal perspectives, offering readers a broad and stimulating overview of the field. It then digs down into topics crucial for optimal CCHP operation. Discussions of each topic are carefully structured, walking readers from introduction and background to technical details. A set of new methodologies for the modeling, optimization and control of CCHP systems are presented within a unified framework. And the authors demonstrate innovative solutions to a variety of CCHP systems problems using new approaches to optimal power flow, load forecasting, and system operation design. Provides a comprehensive review of state-of-the-art of CCHP system development Presents new methodologies for mathematical modeling, optimization, and advanced control Combines theoretical rigor with real-world application perspectives Features numerous examples demonstrating an array of new design strategies Reflects the combined experience of veteran researchers in the field whose contributions are well recognized within the energy community Offers excellent background reading for students currently enrolled in the growing number of courses on energy systems at universities worldwide Timely, authoritative, and offering a balanced presentation of theory and practice, Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a valuable resource forresearchers, design practitioners, and graduate students in the areas of control theory, energy management, and energy systems design.