Combinatorial, Linear, Integer and Nonlinear Optimization Apps

Combinatorial, Linear, Integer and Nonlinear Optimization Apps
Author :
Publisher : Springer Nature
Total Pages : 275
Release :
ISBN-10 : 9783030758011
ISBN-13 : 303075801X
Rating : 4/5 (11 Downloads)

Synopsis Combinatorial, Linear, Integer and Nonlinear Optimization Apps by : J. MacGregor Smith

This textbook provides an introduction to the use and understanding of optimization and modeling for upper-level undergraduate students in engineering and mathematics. The formulation of optimization problems is founded through concepts and techniques from operations research: Combinatorial Optimization, Linear Programming, and Integer and Nonlinear Programming (COLIN). Computer Science (CS) is also relevant and important given the applications of algorithms and Apps/algorithms (A) in solving optimization problems. Each chapter provides an overview of the main concepts of optimization according to COLINA, providing examples through App Inventor and AMPL software applications. All apps developed through the text are available for download. Additionally, the text includes links to the University of Wisconsin NEOS server, designed to handle more computing-intensive problems in complex optimization. Readers are encouraged to have some background in calculus, linear algebra, and related mathematics.

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 687
Release :
ISBN-10 : 9781461419273
ISBN-13 : 1461419271
Rating : 4/5 (73 Downloads)

Synopsis Mixed Integer Nonlinear Programming by : Jon Lee

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 395
Release :
ISBN-10 : 9780387238302
ISBN-13 : 0387238301
Rating : 4/5 (02 Downloads)

Synopsis Handbook of Combinatorial Optimization by : Ding-Zhu Du

This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.

Theory of Linear and Integer Programming

Theory of Linear and Integer Programming
Author :
Publisher : John Wiley & Sons
Total Pages : 488
Release :
ISBN-10 : 0471982326
ISBN-13 : 9780471982326
Rating : 4/5 (26 Downloads)

Synopsis Theory of Linear and Integer Programming by : Alexander Schrijver

Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index

Linear and Integer Optimization

Linear and Integer Optimization
Author :
Publisher : CRC Press
Total Pages : 676
Release :
ISBN-10 : 9781498743129
ISBN-13 : 1498743129
Rating : 4/5 (29 Downloads)

Synopsis Linear and Integer Optimization by : Gerard Sierksma

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models

Optimization Techniques and Applications with Examples

Optimization Techniques and Applications with Examples
Author :
Publisher : John Wiley & Sons
Total Pages : 384
Release :
ISBN-10 : 9781119490548
ISBN-13 : 1119490545
Rating : 4/5 (48 Downloads)

Synopsis Optimization Techniques and Applications with Examples by : Xin-She Yang

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.

Combinatorial Optimization and Applications

Combinatorial Optimization and Applications
Author :
Publisher : Springer Nature
Total Pages : 506
Release :
ISBN-10 : 9783031576034
ISBN-13 : 3031576039
Rating : 4/5 (34 Downloads)

Synopsis Combinatorial Optimization and Applications by : Teodor Gabriel Crainic

Integer Programming

Integer Programming
Author :
Publisher : Springer
Total Pages : 466
Release :
ISBN-10 : 9783319110080
ISBN-13 : 331911008X
Rating : 4/5 (80 Downloads)

Synopsis Integer Programming by : Michele Conforti

This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

Nonlinear Combinatorial Optimization

Nonlinear Combinatorial Optimization
Author :
Publisher : Springer
Total Pages : 317
Release :
ISBN-10 : 9783030161941
ISBN-13 : 3030161943
Rating : 4/5 (41 Downloads)

Synopsis Nonlinear Combinatorial Optimization by : Ding-Zhu Du

Graduate students and researchers in applied mathematics, optimization, engineering, computer science, and management science will find this book a useful reference which provides an introduction to applications and fundamental theories in nonlinear combinatorial optimization. Nonlinear combinatorial optimization is a new research area within combinatorial optimization and includes numerous applications to technological developments, such as wireless communication, cloud computing, data science, and social networks. Theoretical developments including discrete Newton methods, primal-dual methods with convex relaxation, submodular optimization, discrete DC program, along with several applications are discussed and explored in this book through articles by leading experts.

Applied Integer Programming

Applied Integer Programming
Author :
Publisher : John Wiley & Sons
Total Pages : 489
Release :
ISBN-10 : 9780470373064
ISBN-13 : 0470373067
Rating : 4/5 (64 Downloads)

Synopsis Applied Integer Programming by : Der-San Chen

An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.