Coherence for Tricategories

Coherence for Tricategories
Author :
Publisher : American Mathematical Soc.
Total Pages : 94
Release :
ISBN-10 : 9780821803448
ISBN-13 : 0821803441
Rating : 4/5 (48 Downloads)

Synopsis Coherence for Tricategories by : Robert Gordon

This work defines the concept of tricategory as the natural 3-dimensional generalization of bicategory. Trihomomorphism and triequivalence for tricategories are also defined so as to extend the concepts of homomorphism and biequivalence for bicategories.

Coherence in Three-Dimensional Category Theory

Coherence in Three-Dimensional Category Theory
Author :
Publisher : Cambridge University Press
Total Pages : 287
Release :
ISBN-10 : 9781107034891
ISBN-13 : 1107034892
Rating : 4/5 (91 Downloads)

Synopsis Coherence in Three-Dimensional Category Theory by : Nick Gurski

Serves as an introduction to higher categories as well as a reference point for many key concepts in the field.

2-Dimensional Categories

2-Dimensional Categories
Author :
Publisher : Oxford University Press
Total Pages : 476
Release :
ISBN-10 : 9780192645678
ISBN-13 : 0192645676
Rating : 4/5 (78 Downloads)

Synopsis 2-Dimensional Categories by : Niles Johnson

Category theory emerged in the 1940s in the work of Samuel Eilenberg and Saunders Mac Lane. It describes relationships between mathematical structures. Outside of pure mathematics, category theory is an important tool in physics, computer science, linguistics, and a quickly-growing list of other sciences. This book is about 2-dimensional categories, which add an extra dimension of richness and complexity to category theory. 2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory. A review of basic category theory is followed by a systematic discussion of 2-/bicategories, pasting diagrams, lax functors, 2-/bilimits, the Duskin nerve, 2-nerve, internal adjunctions, monads in bicategories, 2-monads, biequivalences, the Bicategorical Yoneda Lemma, and the Coherence Theorem for bicategories. Grothendieck fibrations and the Grothendieck construction are discussed next, followed by tricategories, monoidal bicategories, the Gray tensor product, and double categories. Completely detailed proofs of several fundamental but hard-to-find results are presented for the first time. With exercises and plenty of motivation and explanation, this book is useful for both beginners and experts.

Simplicial Methods for Higher Categories

Simplicial Methods for Higher Categories
Author :
Publisher : Springer
Total Pages : 353
Release :
ISBN-10 : 9783030056742
ISBN-13 : 3030056740
Rating : 4/5 (42 Downloads)

Synopsis Simplicial Methods for Higher Categories by : Simona Paoli

This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.

Encyclopaedia of Mathematics

Encyclopaedia of Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 639
Release :
ISBN-10 : 9789401512794
ISBN-13 : 9401512795
Rating : 4/5 (94 Downloads)

Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Hopf Algebras, Quantum Groups and Yang-Baxter Equations

Hopf Algebras, Quantum Groups and Yang-Baxter Equations
Author :
Publisher : MDPI
Total Pages : 239
Release :
ISBN-10 : 9783038973249
ISBN-13 : 3038973246
Rating : 4/5 (49 Downloads)

Synopsis Hopf Algebras, Quantum Groups and Yang-Baxter Equations by : Florin Felix Nichita

This book is a printed edition of the Special Issue "Hopf Algebras, Quantum Groups and Yang-Baxter Equations" that was published in Axioms

Homotopy Theory of Higher Categories

Homotopy Theory of Higher Categories
Author :
Publisher : Cambridge University Press
Total Pages : 653
Release :
ISBN-10 : 9781139502191
ISBN-13 : 1139502190
Rating : 4/5 (91 Downloads)

Synopsis Homotopy Theory of Higher Categories by : Carlos Simpson

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

The Homotopy Theory of (∞,1)-Categories

The Homotopy Theory of (∞,1)-Categories
Author :
Publisher : Cambridge University Press
Total Pages : 290
Release :
ISBN-10 : 9781108565042
ISBN-13 : 1108565042
Rating : 4/5 (42 Downloads)

Synopsis The Homotopy Theory of (∞,1)-Categories by : Julia E. Bergner

The notion of an (∞,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of each, and the equivalences between the models. While most of the current literature focusses on how to extend category theory in this context, and centers in particular on the quasi-category model, this book offers a balanced treatment of the appropriate model structures for simplicial categories, Segal categories, complete Segal spaces, quasi-categories, and relative categories, all from a homotopy-theoretic perspective. Introductory chapters provide background in both homotopy and category theory and contain many references to the literature, thus making the book accessible to graduates and to researchers in related areas.

Modeling Multi-Level Systems

Modeling Multi-Level Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 244
Release :
ISBN-10 : 9783642179457
ISBN-13 : 3642179452
Rating : 4/5 (57 Downloads)

Synopsis Modeling Multi-Level Systems by : Octavian Iordache

This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale systems. Taking inspiration from systems sciences, chapters 9 to 11 highlight multi-level modeling potentialities in formal concept analysis, existential graphs and evolvable designs of experiments. Case studies refer to separation flow-sheets, pharmaceutical pipeline, drug design and development, reliability management systems, security and failure analysis. Perspectives and integrative points of view are discussed in chapter 12. Autonomous and viable systems, multi-agents, organic and autonomic computing, multi-level informational systems, are revealed as promising domains for future applications. Written for: engineers, researchers, entrepreneurs and students in chemical, pharmaceutical, environmental and systems sciences engineering, and for applied mathematicians.

Applied Differential Geometry: A Modern Introduction

Applied Differential Geometry: A Modern Introduction
Author :
Publisher : World Scientific
Total Pages : 1346
Release :
ISBN-10 : 9789814475648
ISBN-13 : 9814475645
Rating : 4/5 (48 Downloads)

Synopsis Applied Differential Geometry: A Modern Introduction by : Vladimir G Ivancevic

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator — “Human Biodynamics Engine”, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools — this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.