Classical Systems in Quantum Mechanics

Classical Systems in Quantum Mechanics
Author :
Publisher : Springer Nature
Total Pages : 243
Release :
ISBN-10 : 9783030450700
ISBN-13 : 3030450708
Rating : 4/5 (00 Downloads)

Synopsis Classical Systems in Quantum Mechanics by : Pavel Bóna

This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems – i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of “quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".

Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 445
Release :
ISBN-10 : 9781461209836
ISBN-13 : 1461209838
Rating : 4/5 (36 Downloads)

Synopsis Chaos in Classical and Quantum Mechanics by : Martin C. Gutzwiller

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.

Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics
Author :
Publisher : World Scientific
Total Pages : 405
Release :
ISBN-10 : 9789814313728
ISBN-13 : 9814313726
Rating : 4/5 (28 Downloads)

Synopsis Geometric Formulation of Classical and Quantum Mechanics by : G. Giachetta

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.

Classical Dynamics of Particles and Systems

Classical Dynamics of Particles and Systems
Author :
Publisher : Academic Press
Total Pages : 593
Release :
ISBN-10 : 9781483272818
ISBN-13 : 1483272818
Rating : 4/5 (18 Downloads)

Synopsis Classical Dynamics of Particles and Systems by : Jerry B. Marion

Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems
Author :
Publisher : World Scientific
Total Pages : 317
Release :
ISBN-10 : 9789814299640
ISBN-13 : 9814299642
Rating : 4/5 (40 Downloads)

Synopsis Classical and Quantum Dynamics of Constrained Hamiltonian Systems by : Heinz J. Rothe

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.

The Transition to Chaos

The Transition to Chaos
Author :
Publisher : Springer Science & Business Media
Total Pages : 566
Release :
ISBN-10 : 9781475743524
ISBN-13 : 1475743521
Rating : 4/5 (24 Downloads)

Synopsis The Transition to Chaos by : Linda Reichl

resonances. Nonlinear resonances cause divergences in conventional perturbation expansions. This occurs because nonlinear resonances cause a topological change locally in the structure of the phase space and simple perturbation theory is not adequate to deal with such topological changes. In Sect. (2.3), we introduce the concept of integrability. A sys tem is integrable if it has as many global constants of the motion as degrees of freedom. The connection between global symmetries and global constants of motion was first proven for dynamical systems by Noether [Noether 1918]. We will give a simple derivation of Noether's theorem in Sect. (2.3). As we shall see in more detail in Chapter 5, are whole classes of systems which are now known to be inte there grable due to methods developed for soliton physics. In Sect. (2.3), we illustrate these methods for the simple three-body Toda lattice. It is usually impossible to tell if a system is integrable or not just by looking at the equations of motion. The Poincare surface of section provides a very useful numerical tool for testing for integrability and will be used throughout the remainder of this book. We will illustrate the use of the Poincare surface of section for classic model of Henon and Heiles [Henon and Heiles 1964].

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics
Author :
Publisher : Courier Corporation
Total Pages : 674
Release :
ISBN-10 : 9780486135069
ISBN-13 : 0486135063
Rating : 4/5 (69 Downloads)

Synopsis Mathematics of Classical and Quantum Physics by : Frederick W. Byron

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems
Author :
Publisher : Springer
Total Pages : 420
Release :
ISBN-10 : 9783030241988
ISBN-13 : 303024198X
Rating : 4/5 (88 Downloads)

Synopsis Elements of Classical and Quantum Integrable Systems by : Gleb Arutyunov

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Quantum Structural Studies: Classical Emergence From The Quantum Level

Quantum Structural Studies: Classical Emergence From The Quantum Level
Author :
Publisher : World Scientific
Total Pages : 499
Release :
ISBN-10 : 9781786341426
ISBN-13 : 1786341425
Rating : 4/5 (26 Downloads)

Synopsis Quantum Structural Studies: Classical Emergence From The Quantum Level by : Ruth E Kastner

The structural aspects of composite quantum systems in the foundation, interpretation and application of quantum theory is an increasingly prominent topic of physics research. As an emerging field, it seeks to understand the origins of the classical world of experience from the quantum level.Quantum Structural Studies presents conceptual fundamentals and mathematical methods for investigating the structuring of quantum systems into subsystems. Split into four sections, the topics covered include the historical and philosophical aspects of quantum structures, specific interpretive approaches and ontologies, and alternative methodological approaches to quantum mechanics. Questions addressed are: Specialists, graduate students and researchers seeking an introduction to the field of emergent structures and new directions for research and experimentation can use this book to find up-to-date representative texts and reviews.

Ensembles on Configuration Space

Ensembles on Configuration Space
Author :
Publisher : Springer
Total Pages : 284
Release :
ISBN-10 : 9783319341668
ISBN-13 : 3319341669
Rating : 4/5 (68 Downloads)

Synopsis Ensembles on Configuration Space by : Michael J. W. Hall

This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.