Classical Mathematical Logic
Download Classical Mathematical Logic full books in PDF, epub, and Kindle. Read online free Classical Mathematical Logic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Richard L. Epstein |
Publisher |
: Princeton University Press |
Total Pages |
: 545 |
Release |
: 2006-07-23 |
ISBN-10 |
: 9780691123004 |
ISBN-13 |
: 0691123004 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Classical Mathematical Logic by : Richard L. Epstein
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
Author |
: Eric Schechter |
Publisher |
: Princeton University Press |
Total Pages |
: 530 |
Release |
: 2005-08-28 |
ISBN-10 |
: 0691122792 |
ISBN-13 |
: 9780691122793 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Classical and Nonclassical Logics by : Eric Schechter
Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).
Author |
: Zofia Adamowicz |
Publisher |
: John Wiley & Sons |
Total Pages |
: 276 |
Release |
: 2011-09-26 |
ISBN-10 |
: 9781118030790 |
ISBN-13 |
: 1118030796 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Logic of Mathematics by : Zofia Adamowicz
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Author |
: Elliot Mendelsohn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 351 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461572886 |
ISBN-13 |
: 1461572886 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Introduction to Mathematical Logic by : Elliot Mendelsohn
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Author |
: Graham Priest |
Publisher |
: Cambridge University Press |
Total Pages |
: 582 |
Release |
: 2008-04-10 |
ISBN-10 |
: 9781139469678 |
ISBN-13 |
: 1139469673 |
Rating |
: 4/5 (78 Downloads) |
Synopsis An Introduction to Non-Classical Logic by : Graham Priest
This revised and considerably expanded 2nd edition brings together a wide range of topics, including modal, tense, conditional, intuitionist, many-valued, paraconsistent, relevant, and fuzzy logics. Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Author |
: Stephen Cole Kleene |
Publisher |
: Courier Corporation |
Total Pages |
: 436 |
Release |
: 2013-04-22 |
ISBN-10 |
: 9780486317076 |
ISBN-13 |
: 0486317072 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Mathematical Logic by : Stephen Cole Kleene
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Author |
: Harrie de Swart |
Publisher |
: Springer |
Total Pages |
: 558 |
Release |
: 2018-11-28 |
ISBN-10 |
: 9783030032555 |
ISBN-13 |
: 3030032558 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Philosophical and Mathematical Logic by : Harrie de Swart
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
Author |
: Wolfgang Rautenberg |
Publisher |
: Springer |
Total Pages |
: 337 |
Release |
: 2010-07-01 |
ISBN-10 |
: 9781441912213 |
ISBN-13 |
: 1441912215 |
Rating |
: 4/5 (13 Downloads) |
Synopsis A Concise Introduction to Mathematical Logic by : Wolfgang Rautenberg
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Author |
: George Tourlakis |
Publisher |
: John Wiley & Sons |
Total Pages |
: 314 |
Release |
: 2011-03-01 |
ISBN-10 |
: 9781118030691 |
ISBN-13 |
: 1118030699 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Mathematical Logic by : George Tourlakis
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
Author |
: J. N. Crossley |
Publisher |
: Courier Corporation |
Total Pages |
: 99 |
Release |
: 2012-08-29 |
ISBN-10 |
: 9780486151526 |
ISBN-13 |
: 0486151522 |
Rating |
: 4/5 (26 Downloads) |
Synopsis What Is Mathematical Logic? by : J. N. Crossley
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.