Classical Lie Algebras at Infinity

Classical Lie Algebras at Infinity
Author :
Publisher : Springer Nature
Total Pages : 245
Release :
ISBN-10 : 9783030896607
ISBN-13 : 3030896609
Rating : 4/5 (07 Downloads)

Synopsis Classical Lie Algebras at Infinity by : Ivan Penkov

Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.

Stability in Modules for Classical Lie Algebras: A Constructive Approach

Stability in Modules for Classical Lie Algebras: A Constructive Approach
Author :
Publisher : American Mathematical Soc.
Total Pages : 177
Release :
ISBN-10 : 9780821824924
ISBN-13 : 0821824929
Rating : 4/5 (24 Downloads)

Synopsis Stability in Modules for Classical Lie Algebras: A Constructive Approach by : Georgia Benkart

In this work we consider the problem of determining information about representations as the rank grows large, in fact, tends to infinity. Here we show that the set of dominant weights stabilizes as the rank goes to infinity and the multiplicities become polynomials in the rank. In addition, we give effective, easily computable algorithms for determining the set of dominant weights and illustrate how to calculate their multiplicity polynomials.

Advances in Lie Superalgebras

Advances in Lie Superalgebras
Author :
Publisher : Springer Science & Business
Total Pages : 281
Release :
ISBN-10 : 9783319029528
ISBN-13 : 3319029525
Rating : 4/5 (28 Downloads)

Synopsis Advances in Lie Superalgebras by : Maria Gorelik

The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.

Perspectives in Lie Theory

Perspectives in Lie Theory
Author :
Publisher : Springer
Total Pages : 465
Release :
ISBN-10 : 9783319589718
ISBN-13 : 3319589717
Rating : 4/5 (18 Downloads)

Synopsis Perspectives in Lie Theory by : Filippo Callegaro

Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 237
Release :
ISBN-10 : 9780521889698
ISBN-13 : 0521889693
Rating : 4/5 (98 Downloads)

Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Representations and Nilpotent Orbits of Lie Algebraic Systems

Representations and Nilpotent Orbits of Lie Algebraic Systems
Author :
Publisher : Springer Nature
Total Pages : 563
Release :
ISBN-10 : 9783030235314
ISBN-13 : 3030235319
Rating : 4/5 (14 Downloads)

Synopsis Representations and Nilpotent Orbits of Lie Algebraic Systems by : Maria Gorelik

This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

Yang-Baxter Equation in Integrable Systems

Yang-Baxter Equation in Integrable Systems
Author :
Publisher : World Scientific
Total Pages : 740
Release :
ISBN-10 : 9810201206
ISBN-13 : 9789810201203
Rating : 4/5 (06 Downloads)

Synopsis Yang-Baxter Equation in Integrable Systems by : Michio Jimbo

This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions.

Lie Superalgebras and Enveloping Algebras

Lie Superalgebras and Enveloping Algebras
Author :
Publisher : American Mathematical Soc.
Total Pages : 512
Release :
ISBN-10 : 9780821868676
ISBN-13 : 0821868675
Rating : 4/5 (76 Downloads)

Synopsis Lie Superalgebras and Enveloping Algebras by : Ian Malcolm Musson

Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.