Circular and Linear Regression

Circular and Linear Regression
Author :
Publisher : CRC Press
Total Pages : 285
Release :
ISBN-10 : 9781439835913
ISBN-13 : 1439835918
Rating : 4/5 (13 Downloads)

Synopsis Circular and Linear Regression by : Nikolai Chernov

Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and comput

Circular and Linear Regression

Circular and Linear Regression
Author :
Publisher :
Total Pages : 286
Release :
ISBN-10 : 0429151411
ISBN-13 : 9780429151415
Rating : 4/5 (11 Downloads)

Synopsis Circular and Linear Regression by : Nikolai Chernov

Find the right algorithm for your image processing applicationExploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and computer vision. The author covers all facets-geometric, statistical, and computational-of the methods. He looks at how the numerical algorithms relate to one another through underlying ideas, compares the strengths and weaknesses of each algorithm, and il.

Topics in Circular Statistics

Topics in Circular Statistics
Author :
Publisher : World Scientific
Total Pages : 336
Release :
ISBN-10 : 9789810237783
ISBN-13 : 9810237782
Rating : 4/5 (83 Downloads)

Synopsis Topics in Circular Statistics by : S. Rao Jammalamadaka

This research monograph on circular data analysis covers some recent advances in the field, besides providing a brief introduction to, and a review of, existing methods and models. The primary focus is on recent research into topics such as change-point problems, predictive distributions, circular correlation and regression, etc. An important feature of this work is the S-plus subroutines provided for analyzing actual data sets. Coupled with the discussion of new theoretical research, the book should benefit both the researcher and the practitioner.

Multiple Regression and Beyond

Multiple Regression and Beyond
Author :
Publisher : Routledge
Total Pages : 640
Release :
ISBN-10 : 9781351667937
ISBN-13 : 1351667939
Rating : 4/5 (37 Downloads)

Synopsis Multiple Regression and Beyond by : Timothy Z. Keith

Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources

Data Analysis with R, Second Edition

Data Analysis with R, Second Edition
Author :
Publisher : Packt Publishing Ltd
Total Pages : 555
Release :
ISBN-10 : 9781788397339
ISBN-13 : 1788397339
Rating : 4/5 (39 Downloads)

Synopsis Data Analysis with R, Second Edition by : Anthony Fischetti

Learn, by example, the fundamentals of data analysis as well as several intermediate to advanced methods and techniques ranging from classification and regression to Bayesian methods and MCMC, which can be put to immediate use. Key Features Analyze your data using R – the most powerful statistical programming language Learn how to implement applied statistics using practical use-cases Use popular R packages to work with unstructured and structured data Book Description Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst. What you will learn Gain a thorough understanding of statistical reasoning and sampling theory Employ hypothesis testing to draw inferences from your data Learn Bayesian methods for estimating parameters Train regression, classification, and time series models Handle missing data gracefully using multiple imputation Identify and manage problematic data points Learn how to scale your analyses to larger data with Rcpp, data.table, dplyr, and parallelization Put best practices into effect to make your job easier and facilitate reproducibility Who this book is for Budding data scientists and data analysts who are new to the concept of data analysis, or who want to build efficient analytical models in R will find this book to be useful. No prior exposure to data analysis is needed, although a fundamental understanding of the R programming language is required to get the best out of this book.

Handbook of Regression Methods

Handbook of Regression Methods
Author :
Publisher : CRC Press
Total Pages : 654
Release :
ISBN-10 : 9781498775304
ISBN-13 : 1498775306
Rating : 4/5 (04 Downloads)

Synopsis Handbook of Regression Methods by : Derek Scott Young

Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses

Regression Analysis

Regression Analysis
Author :
Publisher : SAGE
Total Pages : 286
Release :
ISBN-10 : 0761929045
ISBN-13 : 9780761929048
Rating : 4/5 (45 Downloads)

Synopsis Regression Analysis by : Richard A. Berk

PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.

Statistical Regression and Classification

Statistical Regression and Classification
Author :
Publisher : CRC Press
Total Pages : 439
Release :
ISBN-10 : 9781351645898
ISBN-13 : 1351645897
Rating : 4/5 (98 Downloads)

Synopsis Statistical Regression and Classification by : Norman Matloff

Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

Solutions Manual to accompany Introduction to Linear Regression Analysis

Solutions Manual to accompany Introduction to Linear Regression Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 112
Release :
ISBN-10 : 9781118548509
ISBN-13 : 1118548507
Rating : 4/5 (09 Downloads)

Synopsis Solutions Manual to accompany Introduction to Linear Regression Analysis by : Douglas C. Montgomery

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.

Regression for Categorical Data

Regression for Categorical Data
Author :
Publisher : Cambridge University Press
Total Pages : 573
Release :
ISBN-10 : 9781139499583
ISBN-13 : 1139499580
Rating : 4/5 (83 Downloads)

Synopsis Regression for Categorical Data by : Gerhard Tutz

This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.