Characterization Methods for Submicron MOSFETs

Characterization Methods for Submicron MOSFETs
Author :
Publisher : Springer Science & Business Media
Total Pages : 240
Release :
ISBN-10 : 9781461313557
ISBN-13 : 1461313554
Rating : 4/5 (57 Downloads)

Synopsis Characterization Methods for Submicron MOSFETs by : Hisham Haddara

It is true that the Metal-Oxide-Semiconductor Field-Eeffect Transistor (MOSFET) is a key component in modern microelectronics. It is also true that there is a lack of comprehensive books on MOSFET characterization in gen eral. However there is more than that as to the motivation and reasons behind writing this book. During the last decade, device physicists, researchers and engineers have been continuously faced with new elements which made the task of MOSFET characterization more and more crucial as well as difficult. The progressive miniaturization of devices has caused several phenomena to emerge and modify the performance of scaled-down MOSFETs. Localized degradation induced by hot carrier injection and Random Telegraph Signal (RTS) noise generated by individual traps are examples of these phenomena. Therefore, it was inevitable to develop new models and new characterization methods or at least adapt the existing ones to cope with the special nature of these new phenomena. The need for more deep and extensive characterization of MOSFET param eters has further increased as the applications of this device have gained ground in many new fields in which its performance has become more and more sensi tive to the properties of its Si - Si0 interface. MOS transistors have crossed 2 the borders of high speed electronics where they operate at GHz frequencies. Moreover, MOSFETs are now widely employed in the subthreshold regime in neural circuits and biomedical applications.

Characterization Methods for Submicron Mosfets

Characterization Methods for Submicron Mosfets
Author :
Publisher :
Total Pages : 252
Release :
ISBN-10 : 1461313562
ISBN-13 : 9781461313564
Rating : 4/5 (62 Downloads)

Synopsis Characterization Methods for Submicron Mosfets by : Hisham Haddara

The Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is a key component in modern microelectronics. During the last decade, device physicists, researchers and engineers have been continuously faced with new elements making the task of MOSFET characterization increasingly crucial, as well as more difficult. The progressive miniaturization of devices has caused several phenomena to emerge and modify the performance of scaled-down MOSFETs. Localized degradation induced by hot carrier injection and Random Telegraph Signal (RTS) noise generated by individual traps are examples. It was thus unavoidable to develop new models and new characterization methods, or at least adapt the existing ones to cope with the special nature of these new phenomena. Characterization Methods for Submicron MOSFETs deals with techniques which show high potential for characterization of submicron devices. Throughout the book the focus is on the adaptation of such methods to resolve measurement problems relevant to VLSI devices and new materials, especially Silicon-on-Insulator (SOI). Characterization Methods for Submicron MOSFETs was written to provide help to device engineers and researchers to enable them to cope with the challenges they face. Without adequate device characterization, new physical phenomena and new types of defects or damage may not be well identified or dealt with, leading to an undoubted obstruction of the device development cycle. Audience: Researchers and graduate students familiar with MOS device physics, working in the field of device characterization and modeling. Also intended for industrial engineers working in device development, seeking to enlarge their understanding of measurement methods. The book additionally addresses device-based characterization for material and process engineers and for circuit designers. A valuable reference that may be used as a text for advanced courses on the subject.

CMOS RF Modeling, Characterization and Applications

CMOS RF Modeling, Characterization and Applications
Author :
Publisher : World Scientific
Total Pages : 426
Release :
ISBN-10 : 9810249055
ISBN-13 : 9789810249052
Rating : 4/5 (55 Downloads)

Synopsis CMOS RF Modeling, Characterization and Applications by : M. Jamal Deen

CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.

Silicon-on-insulator Technology and Devices

Silicon-on-insulator Technology and Devices
Author :
Publisher : The Electrochemical Society
Total Pages : 392
Release :
ISBN-10 : 1566772257
ISBN-13 : 9781566772259
Rating : 4/5 (57 Downloads)

Synopsis Silicon-on-insulator Technology and Devices by : Peter L. F. Hemment

Analysis and Design of MOSFETs

Analysis and Design of MOSFETs
Author :
Publisher : Springer Science & Business Media
Total Pages : 356
Release :
ISBN-10 : 9781461554158
ISBN-13 : 1461554152
Rating : 4/5 (58 Downloads)

Synopsis Analysis and Design of MOSFETs by : Juin Jei Liou

Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.

Noise In Physical Systems And 1/f Fluctuations - Proceedings Of The 14th International Conference

Noise In Physical Systems And 1/f Fluctuations - Proceedings Of The 14th International Conference
Author :
Publisher : World Scientific
Total Pages : 702
Release :
ISBN-10 : 9789814546140
ISBN-13 : 9814546143
Rating : 4/5 (40 Downloads)

Synopsis Noise In Physical Systems And 1/f Fluctuations - Proceedings Of The 14th International Conference by : C Claeys

The recent conferences in this series were organised in Montreal (1987), Budapest (1989), Kyoto (1991), St Louis (1993) and Palanga (1995). The aim of the conference was to bring together specialists in fluctuation phenomena from different fields and to make a bridge between theoretical scientists and more applied or engineering oriented researchers. Therefore a broad variety of topics covering the fundamental aspects of noise and fluctuations as well as applications in various fields are addressed. Noise in materials, components, circuits and electronic, biological and other physical systems are discussed.

Semiconductor Material and Device Characterization

Semiconductor Material and Device Characterization
Author :
Publisher : John Wiley & Sons
Total Pages : 800
Release :
ISBN-10 : 9780471739067
ISBN-13 : 0471739065
Rating : 4/5 (67 Downloads)

Synopsis Semiconductor Material and Device Characterization by : Dieter K. Schroder

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.