Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates

Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates
Author :
Publisher : Elsevier
Total Pages : 292
Release :
ISBN-10 : 9781483294476
ISBN-13 : 1483294471
Rating : 4/5 (76 Downloads)

Synopsis Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates by : M. Kitahara

The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It provides the only self-contained description of the method and fills a gap in the literature. No-one seriously interested in eigenvalue problems of elasticity or in the boundary integral equation method can afford not to read this book. Research workers, practising engineers and students will all find much of benefit to them.Contents: Introduction. Part I. Applications of Boundary Integral Equation Methods to Eigenvalue Problems of Elastodynamics. Fundamentals of BIE Methods for Elastodynamics. Formulation of BIEs for Steady-State Elastodynamics. Formulation of Eigenvalue Problems by the BIEs. Analytical Treatment of Integral Equations for Circular and Annular Domains. Numerical Procedures for Eigenvalue Problems. Numerical Analysis of Eigenvalue Problems in Antiplane Elastodynamics. Numerical Analysis of Eigenvalue Problems in Elastodynamics. Appendix: Dominant mode analysis around caverns in a semi-infinite domain. Part II. Applications of BIE Methods to Eigenvalue Problems of Thin Plates. Fundamentals of BIE Methods for Thin Plates. Formulation of BIEs for Thin Plates and Eigenvalue Problems. Numerical Analysis of Eigenvalue Problems in Plate Problems. Indexes.

Boundary Integral Equations

Boundary Integral Equations
Author :
Publisher : Springer Nature
Total Pages : 783
Release :
ISBN-10 : 9783030711276
ISBN-13 : 3030711277
Rating : 4/5 (76 Downloads)

Synopsis Boundary Integral Equations by : George C. Hsiao

This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.

Strongly Elliptic Systems and Boundary Integral Equations

Strongly Elliptic Systems and Boundary Integral Equations
Author :
Publisher : Cambridge University Press
Total Pages : 376
Release :
ISBN-10 : 052166375X
ISBN-13 : 9780521663755
Rating : 4/5 (5X Downloads)

Synopsis Strongly Elliptic Systems and Boundary Integral Equations by : William Charles Hector McLean

This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.

Linear Integral Equations

Linear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 427
Release :
ISBN-10 : 9781461495932
ISBN-13 : 1461495938
Rating : 4/5 (32 Downloads)

Synopsis Linear Integral Equations by : Rainer Kress

This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)

Integral Equations

Integral Equations
Author :
Publisher : Birkhäuser
Total Pages : 377
Release :
ISBN-10 : 9783034892155
ISBN-13 : 3034892152
Rating : 4/5 (55 Downloads)

Synopsis Integral Equations by : Wolfgang Hackbusch

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory
Author :
Publisher : SIAM
Total Pages : 286
Release :
ISBN-10 : 9781611973150
ISBN-13 : 1611973155
Rating : 4/5 (50 Downloads)

Synopsis Integral Equation Methods in Scattering Theory by : David Colton

This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.

Computational Methods for Integral Equations

Computational Methods for Integral Equations
Author :
Publisher : CUP Archive
Total Pages : 392
Release :
ISBN-10 : 0521357969
ISBN-13 : 9780521357968
Rating : 4/5 (69 Downloads)

Synopsis Computational Methods for Integral Equations by : L. M. Delves

This textbook provides a readable account of techniques for numerical solutions.

Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Integral Equations: A Practical Treatment, from Spectral Theory to Applications
Author :
Publisher : Cambridge University Press
Total Pages : 388
Release :
ISBN-10 : 0521337429
ISBN-13 : 9780521337427
Rating : 4/5 (29 Downloads)

Synopsis Integral Equations: A Practical Treatment, from Spectral Theory to Applications by : David Porter

This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.

Boundary Element Methods

Boundary Element Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 575
Release :
ISBN-10 : 9783540680932
ISBN-13 : 3540680934
Rating : 4/5 (32 Downloads)

Synopsis Boundary Element Methods by : Stefan A. Sauter

This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.