Biostatistical Design And Analysis Using R
Download Biostatistical Design And Analysis Using R full books in PDF, epub, and Kindle. Read online free Biostatistical Design And Analysis Using R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dr Murray Logan |
Publisher |
: John Wiley & Sons |
Total Pages |
: 578 |
Release |
: 2011-09-20 |
ISBN-10 |
: 9781444362473 |
ISBN-13 |
: 144436247X |
Rating |
: 4/5 (73 Downloads) |
Synopsis Biostatistical Design and Analysis Using R by : Dr Murray Logan
R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
Author |
: Ken A. Aho |
Publisher |
: CRC Press |
Total Pages |
: 598 |
Release |
: 2016-03-09 |
ISBN-10 |
: 9781439873397 |
ISBN-13 |
: 1439873399 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Foundational and Applied Statistics for Biologists Using R by : Ken A. Aho
Full of biological applications, exercises, and interactive graphical examples, this text presents comprehensive coverage of both modern analytical methods and statistical foundations. The author harnesses the inherent properties of the R environment to enable students to examine the code of complicated procedures step by step and thus better understand the process of obtaining analysis results. The graphical capabilities of R are used to provide interactive demonstrations of simple to complex statistical concepts. R code and other materials are available online.
Author |
: Thomas Glover |
Publisher |
: Waveland Press |
Total Pages |
: 551 |
Release |
: 2015-06-29 |
ISBN-10 |
: 9781478631118 |
ISBN-13 |
: 1478631112 |
Rating |
: 4/5 (18 Downloads) |
Synopsis An Introduction to Biostatistics by : Thomas Glover
For over a decade, Glover and Mitchell have provided life-sciences students with an accessible, complete introduction to the use of statistics in their disciplines. The authors emphasize the relationships between probability, probability distributions, and hypothesis testing using both parametric and nonparametric analyses. Copious examples throughout the text apply concepts and theories to real questions faced by researchers in biology, environmental science, biochemistry, and health sciences. Dozens of examples and problems are new to the Third Edition, as are “Concept Checks”—short questions that allow readers to immediately gauge their mastery of the topics presented. Regardless of mathematical background, all readers will appreciate the value of statistics as a fundamental quantitative skill for the life sciences.
Author |
: Jan Lepš |
Publisher |
: Cambridge University Press |
Total Pages |
: 385 |
Release |
: 2020-07-30 |
ISBN-10 |
: 9781108480383 |
ISBN-13 |
: 1108480381 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Biostatistics with R by : Jan Lepš
A straightforward introduction to a wide range of statistical methods for field biologists, using thoroughly explained R code.
Author |
: Peter Dalgaard |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 370 |
Release |
: 2008-06-27 |
ISBN-10 |
: 9780387790541 |
ISBN-13 |
: 0387790543 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Introductory Statistics with R by : Peter Dalgaard
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Author |
: Michael J. Crawley |
Publisher |
: John Wiley & Sons |
Total Pages |
: 953 |
Release |
: 2007-06-13 |
ISBN-10 |
: 0470515066 |
ISBN-13 |
: 9780470515068 |
Rating |
: 4/5 (66 Downloads) |
Synopsis The R Book by : Michael J. Crawley
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Author |
: Ding-Geng (Din) Chen |
Publisher |
: CRC Press |
Total Pages |
: 385 |
Release |
: 2017-06-01 |
ISBN-10 |
: 9781351651141 |
ISBN-13 |
: 1351651145 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Clinical Trial Data Analysis Using R and SAS by : Ding-Geng (Din) Chen
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods."—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.
Author |
: Bertram K.C. Chan, PhD |
Publisher |
: Springer Publishing Company |
Total Pages |
: 460 |
Release |
: 2015-11-05 |
ISBN-10 |
: 9780826110268 |
ISBN-13 |
: 0826110266 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Biostatistics for Epidemiology and Public Health Using R by : Bertram K.C. Chan, PhD
Since it first appeared in 1996, the open-source programming language R has become increasingly popular as an environment for statistical analysis and graphical output. In addition to being freely available, R offers several advantages for biostatistics, including strong graphics capabilities, the ability to write customized functions, and its extensibility. This is the first textbook to present classical biostatistical analysis for epidemiology and related public health sciences to students using the R language. Based on the assumption that readers have minimal familiarity with statistical concepts, the author uses a step-bystep approach to building skills. The text encompasses biostatistics from basic descriptive and quantitative statistics to survival analysis and missing data analysis in epidemiology. Illustrative examples, including real-life research problems and exercises drawn from such areas as nutrition, environmental health, and behavioral health, engage students and reinforce the understanding of R. These examples illustrate the replication of R for biostatistical calculations and graphical display of results. The text covers both essential and advanced techniques and applications in biostatistics that are relevant to epidemiology. This text is supplemented with teaching resources, including an online guide for students in solving exercises and an instructor's manual. KEY FEATURES: First overview biostatistics textbook for epidemiology and public health that uses the open-source R program Covers essential and advanced techniques and applications in biostatistics as relevant to epidemiology Features abundant examples and exercises to illustrate the application of R language for biostatistical calculations and graphical displays of results Includes online student solutions guide and instructor's manual
Author |
: Jerrold H. Zar |
Publisher |
: Pearson |
Total Pages |
: 960 |
Release |
: 2018 |
ISBN-10 |
: 0134995449 |
ISBN-13 |
: 9780134995441 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Biostatistical Analysis by : Jerrold H. Zar
Zar's Biostatistical Analysis, Fifth Edition is the ideal textbook for graduate and undergraduate students seeking practical coverage of statistical analysis methods used by researchers to collect, summarize, analyze and draw conclusions from biological research. The latest edition of this best-selling textbook is both comprehensive and easy to read. It is suitable as an introduction for beginning students and as a comprehensive reference book for biological researchers and for advanced students. This book is appropriate for a one- or two-semester, junior or graduate-level course in biostatistics, biometry, quantitative biology, or statistics, and assumes a prerequisite of algebra.
Author |
: Ronald N. Forthofer |
Publisher |
: Elsevier |
Total Pages |
: 586 |
Release |
: 2014-05-19 |
ISBN-10 |
: 9781483296746 |
ISBN-13 |
: 1483296741 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Introduction to Biostatistics by : Ronald N. Forthofer
The Biostatistics course is often found in the schools of public Health, medical schools, and, occasionally, in statistics and biology departments. The population of students in these courses is a diverse one, with varying preparedness. Introduction to Biostatistics assumes the reader has at least two years of high school algebra, but no previous exposure to statistics is required. Written for individuals who might be fearful of mathematics, this book minimizes the technical difficulties and emphasizes the importance of statistics in scientific investigation. An understanding of underlying design and analysis is stressed. The limitations of the research, design and analytical techniques are discussed, allowing the reader to accurately interpret results. Real data, both processed and raw, are used extensively in examples and exercises. Statistical computing packages - MINITAB, SAS and Stata - are integrated. The use of the computer and software allows a sharper focus on the concepts, letting the computer do the necessary number-crunching. - Emphasizes underlying statistical concepts more than competing texts - Focuses on experimental design and analysis, at an elementary level - Includes an introduction to linear correlation and regression - Statistics are central: probability is downplayed - Presents life tables and survival analysis - Appendix with solutions to many exercises - Special instructor's manual with solution to all exercises