Bioreactor Systems for Tissue Engineering

Bioreactor Systems for Tissue Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 274
Release :
ISBN-10 : 9783540693567
ISBN-13 : 3540693564
Rating : 4/5 (67 Downloads)

Synopsis Bioreactor Systems for Tissue Engineering by : Cornelia Kasper

The editors of this special volume would first like to thank all authors for their excellent contributions. We would also like to thank Prof. Dr. Thomas Scheper, Dr. Marion Hertel and Ulrike Kreusel for providing the opportunity to compose this volume and Springer for organizational and technical support. Tissue engineering represents one of the major emerging fields in modern b- technology; it combines different subjects ranging from biological and material sciences to engineering and clinical disciplines. The aim of tissue engineering is the development of therapeutic approaches to substitute diseased organs or tissues or improve their function. Therefore, three dimensional biocompatible materials are seeded with cells and cultivated in suitable systems to generate functional tissues. Many different aspects play a role in the formation of 3D tissue structures. In the first place the source of the used cells is of the utmost importance. To prevent tissue rejection or immune response, preferentially autologous cells are now used. In particular, stem cells from different sources are gaining exceptional importance as they can be differentiated into different tissues by using special media and supplements. In the field of biomaterials, numerous scaffold materials already exist but new composites are also being developed based on polymeric, natural or xenogenic sources. Moreover, a very important issue in tissue en- neering is the formation of tissues under well defined, controlled and reprod- ible conditions. Therefore, a substantial number of new bioreactors have been developed.

Bioreactors for Tissue Engineering

Bioreactors for Tissue Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 373
Release :
ISBN-10 : 9781402037412
ISBN-13 : 1402037414
Rating : 4/5 (12 Downloads)

Synopsis Bioreactors for Tissue Engineering by : Julian Chaudhuri

For the first time in a single volume, the design, characterisation and operation of the bioreactor system in which the tissue is grown is detailed. Bioreactors for Tissue Engineering presents an overall picture of the current state of knowledge in the engineering of bioreactors for several tissue types (bone, cartilage, vascular), addresses the issue of mechanical conditioning of the tissue, and describes the use of techniques such as MRI for monitoring tissue growth. This unique volume is dedicated to the fundamentals and application of bioreactor technology to tissue engineering products. Not only will it appeal to graduate students and experienced researchers in tissue engineering and regenerative medicine, but also to tissue engineers and culture technologists, academic and industrial chemical engineers, biochemical engineers and cell biologists who wish to understand the criteria used to design and develop novel systems for tissue growth in vitro.

Bioreactor Systems for Tissue Engineering II

Bioreactor Systems for Tissue Engineering II
Author :
Publisher : Springer
Total Pages : 331
Release :
ISBN-10 : 9783642160516
ISBN-13 : 3642160514
Rating : 4/5 (16 Downloads)

Synopsis Bioreactor Systems for Tissue Engineering II by : Cornelia Kasper

Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; * Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; * Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; * Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; * Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; * Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; * Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; * Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; * Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geißler, C. Gittel, H. Jülke, W. Brehm; * Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; * Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi

Bioreactors for Stem Cell Expansion and Differentiation

Bioreactors for Stem Cell Expansion and Differentiation
Author :
Publisher : CRC Press
Total Pages : 260
Release :
ISBN-10 : 9780429841811
ISBN-13 : 0429841817
Rating : 4/5 (11 Downloads)

Synopsis Bioreactors for Stem Cell Expansion and Differentiation by : Joaquim M.S. Cabral

An international team of investigators presents thought-provoking reviews of bioreactors for stem cell expansion and differentiation and provides cutting-edge information on different bioreactor systems. The authors offer novel insights into bioreactor-based culture systems specific for tissue engineering, including sophisticated and cost-effective manufacturing strategies geared to overcome technological shortcomings that currently preclude advances towards product commercialization. This book in the fields of stem cell expansion, bioreactors, bioprocessing, and bio and tissue engineering, gives the reader a full understanding of the state-of-art and the future of these fields. Key selling features: Describes various bioreactors or stem cell culturing systems Reviews methods for stem cell expansion and differentiation for neural, cardiac, hemopoietic, mesenchymal, hepatic and other tissues cell types Distinguishes different types of bioreactors intended for different operational scales of tissue engineering and cellular therapies Includes contributions from an international team of leaders in stem cell research

Characterization of biomaterials

Characterization of biomaterials
Author :
Publisher : Elsevier Inc. Chapters
Total Pages : 50
Release :
ISBN-10 : 9780128091715
ISBN-13 : 0128091711
Rating : 4/5 (15 Downloads)

Synopsis Characterization of biomaterials by : R.A. Junka

Bioreactors allow for engineering complex three-dimensional tissues in vitro as well as understanding and controlling tissue assembly and function on a cellular level. There are numerous designs, configurations, and conditions that have been applied for cell and tissue culture of liver, heart, bone, cartilage, ligaments, blood vessels and other tissues. Computational fluid dynamics as well as other monitoring and sensing technologies can further optimize the mechanical, electrical and chemical conditions used in bioreactors. This chapter is a brief summary of technologies and conditions tested in bioreactor systems for cell infiltration and tissue formation, as well as a review of critical shortcomings and future developments that would allow for development of clinically relevant tissues.

Bioreactor Systems for Tissue Engineering II

Bioreactor Systems for Tissue Engineering II
Author :
Publisher : Springer
Total Pages : 322
Release :
ISBN-10 : 3642160522
ISBN-13 : 9783642160523
Rating : 4/5 (22 Downloads)

Synopsis Bioreactor Systems for Tissue Engineering II by : Cornelia Kasper

Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; * Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; * Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; * Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; * Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; * Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; * Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; * Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; * Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geißler, C. Gittel, H. Jülke, W. Brehm; * Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; * Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi

Advanced Technologies in Cardiovascular Bioengineering

Advanced Technologies in Cardiovascular Bioengineering
Author :
Publisher : Springer Nature
Total Pages : 407
Release :
ISBN-10 : 9783030861407
ISBN-13 : 3030861406
Rating : 4/5 (07 Downloads)

Synopsis Advanced Technologies in Cardiovascular Bioengineering by : Jianyi Zhang

This book presents a systematic overview of the technologies currently being explored and utilized in the fields of cardiovascular tissue engineering and regenerative medicine. Considering the unprecedented rapid progress occurring on multiple technological fronts in cardiac tissue engineering, this important new volume fills a need for an up-to-date, comprehensive text on emerging advanced biological and engineering tools. The book is an important resource for anyone looking to understand the emerging topics that have the potential to substantially influence the future of the field. Coverage includes iPS stem cell technologies, nanotechnologies and nanomedicine, advanced biomanufacturing, 3D culture systems, 3D organoid systems, genetic approaches to cardiovascular tissue engineering, and organ on a chip. This book will be a valuable guide for research scientists, students, and clinical researchers in the fields of cardiovascular biology, medicine, and bioengineering, as well as industry-based practitioners working in biomaterial science, nanomaterials and technology, and rapid prototyping and biomanufacturing (3D bioprinting).

Myocardial Tissue Engineering

Myocardial Tissue Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 272
Release :
ISBN-10 : 9783642180569
ISBN-13 : 3642180566
Rating : 4/5 (69 Downloads)

Synopsis Myocardial Tissue Engineering by : Aldo R. Boccaccini

Myocardial tissue engineering (MTE), a concept that intends to prolong patients’ life after cardiac damage by supporting or restoring heart function, is continuously improving. Common MTE strategies include an engineered ‘vehicle’, which may be a porous scaffold or a dense substrate or patch, made of either natural or synthetic polymeric materials. The function of the substrate is to aid transportation of cells into the diseased region of the heart and support their integration. This book, which contains chapters written by leading experts in MTE, gives a complete analysis of the area and presents the latest advances in the field. The chapters cover all relevant aspects of MTE strategies, including cell sources, specific TE techniques and biomaterials used. Many different cell types have been suggested for cell therapy in the framework of MTE, including autologous bone marrow-derived or cardiac progenitors, as well as embryonic or induced pluripotent stem cells, each having their particular advantages and disadvantages. The book covers a complete range of biomaterials, examining different aspects of their application in MTE, such as biocompatibility with cardiac cells, mechanical capability and compatibility with the mechanical properties of the native myocardium as well as degradation behaviour in vivo and in vitro. Although a great deal of research is being carried out in the field, this book also addresses many questions that still remain unanswered and highlights those areas in which further research efforts are required. The book will also give an insight into clinical trials and possible novel cell sources for cell therapy in MTE.