Bionanocomposites In Tissue Engineering And Regenerative Medicine
Download Bionanocomposites In Tissue Engineering And Regenerative Medicine full books in PDF, epub, and Kindle. Read online free Bionanocomposites In Tissue Engineering And Regenerative Medicine ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Shakeel Ahmed |
Publisher |
: Elsevier |
Total Pages |
: 672 |
Release |
: 2021-06-09 |
ISBN-10 |
: 9780128212806 |
ISBN-13 |
: 0128212802 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Bionanocomposites in Tissue Engineering and Regenerative Medicine by : Shakeel Ahmed
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites - offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. Each bionanocomposite type is covered individually, providing specific and detailed information for each material Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science
Author |
: Shakeel Ahmed |
Publisher |
: Woodhead Publishing |
Total Pages |
: 674 |
Release |
: 2021-06-03 |
ISBN-10 |
: 9780128216347 |
ISBN-13 |
: 0128216344 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Bionanocomposites in Tissue Engineering and Regenerative Medicine by : Shakeel Ahmed
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites – offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. - Each bionanocomposite type is covered individually, providing specific and detailed information for each material - Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy - Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science
Author |
: Alexandru Mihai Grumezescu |
Publisher |
: William Andrew |
Total Pages |
: 532 |
Release |
: 2019-02-28 |
ISBN-10 |
: 9780128166307 |
ISBN-13 |
: 0128166304 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Biomedical Applications of Nanoparticles by : Alexandru Mihai Grumezescu
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Author |
: Sougata Jana |
Publisher |
: John Wiley & Sons |
Total Pages |
: 1063 |
Release |
: 2022-04-18 |
ISBN-10 |
: 9783527349043 |
ISBN-13 |
: 3527349049 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Nanoengineering of Biomaterials by : Sougata Jana
A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.
Author |
: Carole Aimé |
Publisher |
: John Wiley & Sons |
Total Pages |
: 390 |
Release |
: 2017-09-05 |
ISBN-10 |
: 9781118942222 |
ISBN-13 |
: 1118942221 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Bionanocomposites by : Carole Aimé
Beginning with a general overview of nanocomposites, Bionanocomposites: Integrating Biological Processes for Bio-inspired Nanotechnologies details the systems available in nature (nucleic acids, proteins, carbohydrates, lipids) that can be integrated within suitable inorganic matrices for specific applications. Describing the relationship between architecture, hierarchy and function, this book aims at pointing out how bio-systems can be key components of nanocomposites. The text then reviews the design principles, structures, functions and applications of bionanocomposites. It also includes a section presenting related technical methods to help readers identify and understand the most widely used analytical tools such as mass spectrometry, calorimetry, and impedance spectroscopy, among others.
Author |
: Shakeel Ahmed |
Publisher |
: CRC Press |
Total Pages |
: 393 |
Release |
: 2018-04-17 |
ISBN-10 |
: 9781351617147 |
ISBN-13 |
: 1351617141 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Biocomposites by : Shakeel Ahmed
Biocomposites, formed by a matrix and a reinforcement of natural fibers, often mimic the structure of living materials and offer the strength of the matrix as well as biocompatibility. Being renewable, cheap, recyclable, and biodegradable, they have witnessed rapidly growing interest in terms of industrial and fundamental applications. This book focuses on fiber-based composites applied to biomedical and environmental applications. It presents a comprehensive survey of biocomposites from the existing literature, paying particular attention to various biomedical and environmental applications. The text describes mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of bionanocomposites and their applications. The book is the first of its kind to present all these topics together unlike most other books on nano-/biocomposites that are generally limited to their fundamentals, different methods of synthesis, and applications.
Author |
: Kashma Sharma |
Publisher |
: Springer Nature |
Total Pages |
: 318 |
Release |
: |
ISBN-10 |
: 9783031696541 |
ISBN-13 |
: 3031696549 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Novel Bio-nanocomposites for Biomedical Applications by : Kashma Sharma
Author |
: Kishor Kumar Sadasivuni |
Publisher |
: Elsevier |
Total Pages |
: 546 |
Release |
: 2016-09-10 |
ISBN-10 |
: 9780081009741 |
ISBN-13 |
: 0081009747 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Biopolymer Composites in Electronics by : Kishor Kumar Sadasivuni
Biopolymer Composites in Electronics examines the current state-of-the-art in the electronic application based on biopolymer composites. Covering the synthesis, dispersion of fillers, characterization and fabrication of the composite materials, the book will help materials scientists and engineers address the challenges posed by the increased use of biopolymeric materials in electronic applications. The influence of preparation techniques on the generation of micro, meso, and nanoscale fillers, and the effect of filler size and dispersion on various biopolymers are discussed in detail. Applications covered include sensors, actuators, optics, fuel cells, photovoltaics, dielectrics, electromagnetic shielding, piezoelectrics, flexible displays, and microwave absorbers. In addition, characterization techniques are discussed and compared, enabling scientists and engineers to make the correct choice of technique. This book is a 'one-stop' reference for researchers, covering the entire state-of-the-art in biopolymer electronics. Written by a collection of expert worldwide contributors from industry, academia, government, and private research institutions, it is an outstanding reference for researchers in the field of biopolymer composites for advanced technologies. - Enables researchers to keep up with the rapid development of biopolymer electronics, which offer light, flexible, and more cost-effective alternatives to conventional materials of solar cells, light-emitting diodes, and transistors - Includes thorough coverage of the physics and chemistry behind biopolymer composites, helping readers to become rapidly acquainted with the fiel - Provides in-depth information on the range of biopolymer applications in electronics, from printed flexible conductors and novel semiconductor components, to intelligent labels, large area displays, and solar panels
Author |
: Vijay Kumar Thakur |
Publisher |
: John Wiley & Sons |
Total Pages |
: 902 |
Release |
: 2017-04-06 |
ISBN-10 |
: 9781119224464 |
ISBN-13 |
: 1119224462 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Handbook of Composites from Renewable Materials, Nanocomposites by : Vijay Kumar Thakur
This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 7 is solely focused on the "Nanocomposites: Science and Fundamentals" of renewable materials. Some of the important topics include but not limited to: Preparation, characterization, and applications of nanomaterials from renewable resources; hydrogels and its nanocomposites from renewable resources: preparation of chitin-based nanocomposite materials through gelation with ionic liquid; starch-based bionanocomposites; biorenewable nanofiber and nanocrystal; investigation of wear characteristics of dental composite reinforced with rice husk-derived nanosilica filler particles; performance of regenerated cellulose/vermiculite nanocomposites fabricated via ionic liquid; preparation, structure, properties, and interactions of the PVA/cellulose composites; green composites with cellulose nanoreinforcements; biomass composites from bamboo-based micro/nanofibers; synthesis and medicinal properties of polycarbonates and resins from renewable sources; nanostructured polymer composites with modified carbon nanotubes; organic–inorganic nanocomposites derived from polysaccharides; natural polymer-based nanocomposites; cellulose whisker-based green polymer composites; poly (lactic acid) nanocomposites reinforced with different additives; nanocrystalline cellulose; halloysite-based bionanocomposites; nanostructurated composites based on biodegradable polymers and silver nanoparticles; starch-based biomaterials and nanocomposites; green nanocomposites based on PLA and natural organic fillers; and chitin and chitosan-based nanocomposites.
Author |
: Mieczyslaw Jurczyk |
Publisher |
: CRC Press |
Total Pages |
: 422 |
Release |
: 2012-10-26 |
ISBN-10 |
: 9789814303842 |
ISBN-13 |
: 9814303844 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Bionanomaterials for Dental Applications by : Mieczyslaw Jurczyk
This book introduces readers to the structure and characteristics of nanomaterials and their applications in dentistry. With currently available implant materials, the clinical failure rate varies from a few percent to over 10 percent and new materials are clearly needed. Nanomaterials offer the promise of higher strength, better bonding, less toxicity, and enhanced cytocompatibility, leading to increased tissue regeneration. Mieczyslaw Jurczyk, director of the Institute of Materials Science and Engineering at the Poznan University of Technology in Poland, has drawn from work in his laboratory and elsewhere in Poland to show that nanomaterials have important biological applications including in the stomatognathic system consisting of mouth, jaws, and associated structures. The book is written from a materials science and medical point of view and has 13 chapters and about 400 pages. The book can be divided approximately into three sections: the first five chapters introduce nanobiomaterials, the next five chapters describe their dental applications, and the last chapters describe their biocompatibility. Chapter 3 is a compendium on metallic biomaterials such as stainless steel, cobalt alloys, and titanium alloys; bioactive, bioresorbable polymers; and composites and ceramic biomaterials. The "top-down" approach to producing nanomaterials such as high-energy ballmilling and severe plastic deformation, as well as Feynman’s "bottom-up technique" of building atom by atom, are discussed in the next chapter. Subsequent chapters discuss each material in depth and point out how new architectures and properties emerge at the nanoscale. Chapter 8 is devoted to shape-memory materials, which now include not only NiTi but also polymers and magnetic materials. In order to improve bonding, nanomaterials can be used to synthesize implants with surface roughness similar to that of natural tissues. Chapter 9 is devoted to different surface treatments for Ti-based nanomaterials, such as anodic oxidation to improve the bioactivity of titanium and improve the corrosion resistance of porous titanium and its alloys. The use of carbon in various forms—nanoparticles, nanofibers, nanotubes, and thin films—is discussed next with emphasis on the microstructure and properties of these materials, their implant applications, and their interaction with subcutaneous tissues. Nanomaterials can be used in preventive dentistry and therefore can reduce the amount of dental treatment that is necessary to maintain a healthy mouth as argued in chapter 11. In a subsequent chapter, the author explains osseointegration (direct bone-to-metal interface) from a biological point of view and early tissue response. The mechanism of the interaction between the implanted materials with the cellular protein in the tissues is described. The last chapter discusses the application of new nanostructured materials in permanent and bioresorbable implants, nanosurface dental implants, and nanostructured dental composite restorative materials. This book not only focuses on nanomaterials but also on nanoengineering to achieve the best results in dentistry. It is recommended to anyone interested in nanomaterials and their applications in dental science. People with a background in materials, chemistry, physics, and biology will benefit from it.