Big Data In Engineering Applications
Download Big Data In Engineering Applications full books in PDF, epub, and Kindle. Read online free Big Data In Engineering Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Sanjiban Sekhar Roy |
Publisher |
: Springer |
Total Pages |
: 381 |
Release |
: 2018-05-02 |
ISBN-10 |
: 9789811084768 |
ISBN-13 |
: 9811084769 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Big Data in Engineering Applications by : Sanjiban Sekhar Roy
This book presents the current trends, technologies, and challenges in Big Data in the diversified field of engineering and sciences. It covers the applications of Big Data ranging from conventional fields of mechanical engineering, civil engineering to electronics, electrical, and computer science to areas in pharmaceutical and biological sciences. This book consists of contributions from various authors from all sectors of academia and industries, demonstrating the imperative application of Big Data for the decision-making process in sectors where the volume, variety, and velocity of information keep increasing. The book is a useful reference for graduate students, researchers and scientists interested in exploring the potential of Big Data in the application of engineering areas.
Author |
: Reza Arghandeh |
Publisher |
: Elsevier |
Total Pages |
: 450 |
Release |
: 2024-07-01 |
ISBN-10 |
: 9780443219511 |
ISBN-13 |
: 0443219516 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Big Data Application in Power Systems by : Reza Arghandeh
Big Data Application in Power Systems, Second Edition presents a thorough update of the previous volume, providing readers with step-by-step guidance in big data analytics utilization for power system diagnostics, operation, and control. Bringing back a team of global experts and drawing on fresh, emerging perspectives, this book provides cutting-edge advice for meeting today's challenges in this rapidly accelerating area of power engineering. Divided into three parts, this book begins by breaking down the big picture for electric utilities, before zooming in to examine theoretical problems and solutions in detail. Finally, the third section provides case studies and applications, demonstrating solution troubleshooting and design from a variety of perspectives and for a range of technologies. Readers will develop new strategies and techniques for leveraging data towards real-world outcomes. Including five brand new chapters on emerging technological solutions, Big Data Application in Power Systems, Second Edition remains an essential resource for the reader aiming to utilize the potential of big data in the power systems of the future. - Provides a total refresh to include the most up-to-date research, developments, and challenges - Focuses on practical techniques, including rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches for processing high dimensional, heterogeneous, and spatiotemporal data - Engages with cross-disciplinary lessons, drawing on the impact of intersectional technology including statistics, computer science, and bioinformatics - Includes five brand new chapters on hot topics, ranging from uncertainty decision-making to features, selection methods, and the opportunities provided by social network data
Author |
: Borko Furht |
Publisher |
: Springer |
Total Pages |
: 405 |
Release |
: 2016-09-16 |
ISBN-10 |
: 9783319445502 |
ISBN-13 |
: 3319445502 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Big Data Technologies and Applications by : Borko Furht
The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.
Author |
: Arun Kumar Sangaiah |
Publisher |
: Academic Press |
Total Pages |
: 364 |
Release |
: 2018-08-21 |
ISBN-10 |
: 9780128133279 |
ISBN-13 |
: 0128133279 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications by : Arun Kumar Sangaiah
Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful. - Presents a brief overview of computational intelligence paradigms and its significant role in application domains - Illustrates the state-of-the-art and recent developments in the new theories and applications of CI approaches - Familiarizes the reader with computational intelligence concepts and technologies that are successfully used in the implementation of cloud-centric multimedia services in massive data processing - Provides new advances in the fields of CI for bio-engineering application
Author |
: R.L. Grossman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 632 |
Release |
: 2001-10-31 |
ISBN-10 |
: 1402001142 |
ISBN-13 |
: 9781402001147 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Data Mining for Scientific and Engineering Applications by : R.L. Grossman
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Author |
: Iman Rahimi |
Publisher |
: CRC Press |
Total Pages |
: 211 |
Release |
: 2020-12-20 |
ISBN-10 |
: 9781000326918 |
ISBN-13 |
: 1000326918 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Big Data Analytics in Supply Chain Management by : Iman Rahimi
In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
Author |
: Shen Liu |
Publisher |
: Academic Press |
Total Pages |
: 208 |
Release |
: 2015-11-20 |
ISBN-10 |
: 9780081006511 |
ISBN-13 |
: 0081006519 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Computational and Statistical Methods for Analysing Big Data with Applications by : Shen Liu
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Author |
: James Warren |
Publisher |
: Simon and Schuster |
Total Pages |
: 481 |
Release |
: 2015-04-29 |
ISBN-10 |
: 9781638351108 |
ISBN-13 |
: 1638351104 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Big Data by : James Warren
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Author |
: Fethi Calisir |
Publisher |
: Springer |
Total Pages |
: 500 |
Release |
: 2019-01-23 |
ISBN-10 |
: 9783030033170 |
ISBN-13 |
: 3030033171 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Industrial Engineering in the Big Data Era by : Fethi Calisir
This book gathers extended versions of the best papers presented at the Global Joint Conference on Industrial Engineering and Its Application Areas (GJCIE), held in Nevsehir, Turkey, on June 21-22, 2018. They reports on industrial engineering methods and applications, with a special focus on the advantages and challenges posed by Big data in this field. The book covers a wide range of topics, including decision making, optimization, supply chain management and quality control.
Author |
: Balwinder Raj |
Publisher |
: CRC Press |
Total Pages |
: 261 |
Release |
: 2023-06-30 |
ISBN-10 |
: 9781000901504 |
ISBN-13 |
: 1000901505 |
Rating |
: 4/5 (04 Downloads) |
Synopsis AI for Big Data-Based Engineering Applications from Security Perspectives by : Balwinder Raj
Artificial intelligence (AI), machine learning, and advanced electronic circuits involve learning from every data input and using those inputs to generate new rules for future business analytics. AI and machine learning are now giving us new opportunities to use big data that we already had, as well as unleash a whole lot of new use cases with new data types. With the increasing use of AI dealing with highly sensitive information such as healthcare, adequate security measures are required to securely store and transmit this information. This book provides a broader coverage of the basic aspects of advanced circuits design and applications. AI for Big Data-Based Engineering Applications from Security Perspectives is an integrated source that aims at understanding the basic concepts associated with the security of advanced circuits. The content includes theoretical frameworks and recent empirical findings in the field to understand the associated principles, key challenges, and recent real-time applications of advanced circuits, AI, and big data security. It illustrates the notions, models, and terminologies that are widely used in the area of Very Large Scale Integration (VLSI) circuits, security, identifies the existing security issues in the field, and evaluates the underlying factors that influence system security. This work emphasizes the idea of understanding the motivation behind advanced circuit design to establish the AI interface and to mitigate security attacks in a better way for big data. This book also outlines exciting areas of future research where already existing methodologies can be implemented. This material is suitable for students, researchers, and professionals with research interest in AI for big data–based engineering applications, faculty members across universities, and software developers.