Big Data – BigData 2024
Author | : Yong Zhang |
Publisher | : Springer Nature |
Total Pages | : 145 |
Release | : |
ISBN-10 | : 9783031770883 |
ISBN-13 | : 3031770889 |
Rating | : 4/5 (83 Downloads) |
Read and Download All BOOK in PDF
Download Big Data Bigdata 2024 full books in PDF, epub, and Kindle. Read online free Big Data Bigdata 2024 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author | : Yong Zhang |
Publisher | : Springer Nature |
Total Pages | : 145 |
Release | : |
ISBN-10 | : 9783031770883 |
ISBN-13 | : 3031770889 |
Rating | : 4/5 (83 Downloads) |
Author | : Viktor Mayer-Schönberger |
Publisher | : Houghton Mifflin Harcourt |
Total Pages | : 257 |
Release | : 2013 |
ISBN-10 | : 9780544002692 |
ISBN-13 | : 0544002695 |
Rating | : 4/5 (92 Downloads) |
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.
Author | : James Warren |
Publisher | : Simon and Schuster |
Total Pages | : 481 |
Release | : 2015-04-29 |
ISBN-10 | : 9781638351108 |
ISBN-13 | : 1638351104 |
Rating | : 4/5 (08 Downloads) |
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Author | : S. Srinivasan |
Publisher | : Springer |
Total Pages | : 567 |
Release | : 2017-05-25 |
ISBN-10 | : 9783319538174 |
ISBN-13 | : 3319538179 |
Rating | : 4/5 (74 Downloads) |
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
Author | : Nitin Kumar |
Publisher | : Mercury Learning and Information |
Total Pages | : 237 |
Release | : 2021-03-24 |
ISBN-10 | : 9781683926436 |
ISBN-13 | : 1683926439 |
Rating | : 4/5 (36 Downloads) |
This book is the basic guide for developers, architects, engineers, and anyone who wants to start leveraging the open-source software Hadoop and Hive to build distributed, scalable concurrent big data applications. Hive will be used for reading, writing, and managing the large, data set files. The book is a concise guide on getting started with an overall understanding on Apache Hadoop and Hive and how they work together to speed up development with minimal effort. It will refer to simple concepts and examples, as they are likely to be the best teaching aids. It will explain the logic, code, and configurations needed to build a successful, distributed, concurrent application, as well as the reason behind those decisions. FEATURES: Shows how to leverage the open-source software Hadoop and Hive to build distributed, scalable, concurrent big data applications Includes material on Hive architecture with various storage types and the Hive query language Features a chapter on big data and how Hadoop can be used to solve the changes around it Explains the basic Hadoop setup, configuration, and optimization
Author | : Tyler Akidau |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 362 |
Release | : 2018-07-16 |
ISBN-10 | : 9781491983829 |
ISBN-13 | : 1491983825 |
Rating | : 4/5 (29 Downloads) |
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
Author | : Katharine G. Abraham |
Publisher | : University of Chicago Press |
Total Pages | : 502 |
Release | : 2022-03-11 |
ISBN-10 | : 9780226801254 |
ISBN-13 | : 022680125X |
Rating | : 4/5 (54 Downloads) |
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.
Author | : Bill Chambers |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 594 |
Release | : 2018-02-08 |
ISBN-10 | : 9781491912294 |
ISBN-13 | : 1491912294 |
Rating | : 4/5 (94 Downloads) |
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Author | : Michael Minelli |
Publisher | : John Wiley & Sons |
Total Pages | : 230 |
Release | : 2013-01-22 |
ISBN-10 | : 9781118147603 |
ISBN-13 | : 111814760X |
Rating | : 4/5 (03 Downloads) |
Unique prospective on the big data analytics phenomenon for both business and IT professionals The availability of Big Data, low-cost commodity hardware and new information management and analytics software has produced a unique moment in the history of business. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. These capabilities are neither theoretical nor trivial. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue and profitability. The Age of Big Data is here, and these are truly revolutionary times. This timely book looks at cutting-edge companies supporting an exciting new generation of business analytics. Learn more about the trends in big data and how they are impacting the business world (Risk, Marketing, Healthcare, Financial Services, etc.) Explains this new technology and how companies can use them effectively to gather the data that they need and glean critical insights Explores relevant topics such as data privacy, data visualization, unstructured data, crowd sourcing data scientists, cloud computing for big data, and much more.
Author | : Thomas Davenport |
Publisher | : Harvard Business Review Press |
Total Pages | : 241 |
Release | : 2014-02-04 |
ISBN-10 | : 9781422168172 |
ISBN-13 | : 1422168174 |
Rating | : 4/5 (72 Downloads) |
Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.