Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing
Author :
Publisher : John Wiley & Sons
Total Pages : 432
Release :
ISBN-10 : 9781119247296
ISBN-13 : 1119247292
Rating : 4/5 (96 Downloads)

Synopsis Big-Data Analytics for Cloud, IoT and Cognitive Computing by : Kai Hwang

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing
Author :
Publisher : John Wiley & Sons
Total Pages : 428
Release :
ISBN-10 : 9781119247029
ISBN-13 : 1119247020
Rating : 4/5 (29 Downloads)

Synopsis Big-Data Analytics for Cloud, IoT and Cognitive Computing by : Kai Hwang

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

Cloud Computing for Machine Learning and Cognitive Applications

Cloud Computing for Machine Learning and Cognitive Applications
Author :
Publisher : MIT Press
Total Pages : 626
Release :
ISBN-10 : 9780262036412
ISBN-13 : 026203641X
Rating : 4/5 (12 Downloads)

Synopsis Cloud Computing for Machine Learning and Cognitive Applications by : Kai Hwang

The first textbook to teach students how to build data analytic solutions on large data sets using cloud-based technologies. This is the first textbook to teach students how to build data analytic solutions on large data sets (specifically in Internet of Things applications) using cloud-based technologies for data storage, transmission and mashup, and AI techniques to analyze this data. This textbook is designed to train college students to master modern cloud computing systems in operating principles, architecture design, machine learning algorithms, programming models and software tools for big data mining, analytics, and cognitive applications. The book will be suitable for use in one-semester computer science or electrical engineering courses on cloud computing, machine learning, cloud programming, cognitive computing, or big data science. The book will also be very useful as a reference for professionals who want to work in cloud computing and data science. Cloud and Cognitive Computing begins with two introductory chapters on fundamentals of cloud computing, data science, and adaptive computing that lay the foundation for the rest of the book. Subsequent chapters cover topics including cloud architecture, mashup services, virtual machines, Docker containers, mobile clouds, IoT and AI, inter-cloud mashups, and cloud performance and benchmarks, with a focus on Google's Brain Project, DeepMind, and X-Lab programs, IBKai HwangM SyNapse, Bluemix programs, cognitive initiatives, and neurocomputers. The book then covers machine learning algorithms and cloud programming software tools and application development, applying the tools in machine learning, social media, deep learning, and cognitive applications. All cloud systems are illustrated with big data and cognitive application examples.

Cognitive Engineering for Next Generation Computing

Cognitive Engineering for Next Generation Computing
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : 9781119711285
ISBN-13 : 1119711282
Rating : 4/5 (85 Downloads)

Synopsis Cognitive Engineering for Next Generation Computing by : Kolla Bhanu Prakash

The cognitive approach to the IoT provides connectivity to everyone and everything since IoT connected devices are known to increase rapidly. When the IoT is integrated with cognitive technology, performance is improved, and smart intelligence is obtained. Discussed in this book are different types of datasets with structured content based on cognitive systems. The IoT gathers the information from the real time datasets through the internet, where the IoT network connects with multiple devices. This book mainly concentrates on providing the best solutions to existing real-time issues in the cognitive domain. Healthcare-based, cloud-based and smart transportation-based applications in the cognitive domain are addressed. The data integrity and security aspects of the cognitive computing main are also thoroughly discussed along with validated results.

Cognitive Computing and Big Data Analytics

Cognitive Computing and Big Data Analytics
Author :
Publisher : John Wiley & Sons
Total Pages : 311
Release :
ISBN-10 : 9781118896631
ISBN-13 : 1118896637
Rating : 4/5 (31 Downloads)

Synopsis Cognitive Computing and Big Data Analytics by : Judith S. Hurwitz

A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data. This book helps technologists understand cognitive computing's underlying technologies, from knowledge representation techniques and natural language processing algorithms to dynamic learning approaches based on accumulated evidence, rather than reprogramming. Detailed case examples from the financial, healthcare, and manufacturing walk readers step-by-step through the design and testing of cognitive systems, and expert perspectives from organizations such as Cleveland Clinic, Memorial Sloan-Kettering, as well as commercial vendors that are creating solutions. These organizations provide insight into the real-world implementation of cognitive computing systems. The IBM Watson cognitive computing platform is described in a detailed chapter because of its significance in helping to define this emerging market. In addition, the book includes implementations of emerging projects from Qualcomm, Hitachi, Google and Amazon. Today's cognitive computing solutions build on established concepts from artificial intelligence, natural language processing, ontologies, and leverage advances in big data management and analytics. They foreshadow an intelligent infrastructure that enables a new generation of customer and context-aware smart applications in all industries. Cognitive Computing is a comprehensive guide to the subject, providing both the theoretical and practical guidance technologists need. Discover how cognitive computing evolved from promise to reality Learn the elements that make up a cognitive computing system Understand the groundbreaking hardware and software technologies behind cognitive computing Learn to evaluate your own application portfolio to find the best candidates for pilot projects Leverage cognitive computing capabilities to transform the organization Cognitive systems are rightly being hailed as the new era of computing. Learn how these technologies enable emerging firms to compete with entrenched giants, and forward-thinking established firms to disrupt their industries. Professionals who currently work with big data and analytics will see how cognitive computing builds on their foundation, and creates new opportunities. Cognitive Computing provides complete guidance to this new level of human-machine interaction.

Machine Learning Approach for Cloud Data Analytics in IoT

Machine Learning Approach for Cloud Data Analytics in IoT
Author :
Publisher : John Wiley & Sons
Total Pages : 528
Release :
ISBN-10 : 9781119785859
ISBN-13 : 1119785855
Rating : 4/5 (59 Downloads)

Synopsis Machine Learning Approach for Cloud Data Analytics in IoT by : Sachi Nandan Mohanty

Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.

Cognitive Analytics: Concepts, Methodologies, Tools, and Applications

Cognitive Analytics: Concepts, Methodologies, Tools, and Applications
Author :
Publisher : IGI Global
Total Pages : 1961
Release :
ISBN-10 : 9781799824619
ISBN-13 : 1799824616
Rating : 4/5 (19 Downloads)

Synopsis Cognitive Analytics: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources

Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks
Author :
Publisher : John Wiley & Sons
Total Pages : 272
Release :
ISBN-10 : 9781119640363
ISBN-13 : 1119640369
Rating : 4/5 (63 Downloads)

Synopsis Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks by : Krishna Kant Singh

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.

Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks

Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks
Author :
Publisher : CRC Press
Total Pages : 291
Release :
ISBN-10 : 9781000539424
ISBN-13 : 1000539423
Rating : 4/5 (24 Downloads)

Synopsis Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks by : Sanjoy Das

This book discusses intelligent computing through the Internet of Things (IoT) and Big-Data in vehicular environments in a single volume. It covers important topics, such as topology-based routing protocols, heterogeneous wireless networks, security risks, software-defined vehicular ad-hoc networks, vehicular delay tolerant networks, and energy harvesting for WSNs using rectenna. FEATURES Covers applications of IoT in Vehicular Ad-hoc Networks (VANETs) Discusses use of machine learning and other computing techniques for enhancing performance of networks Explains game theory-based vertical handoffs in heterogeneous wireless networks Examines monitoring and surveillance of vehicles through the vehicular sensor network Investigates theoretical approaches on software-defined VANET The book is aimed at graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science, and engineering.

The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems

The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems
Author :
Publisher : Academic Press
Total Pages : 203
Release :
ISBN-10 : 9780128166093
ISBN-13 : 0128166096
Rating : 4/5 (93 Downloads)

Synopsis The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems by : Dinesh Peter

The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems discusses the recent, rapid development of Internet of things (IoT) and its focus on research in smart cities, especially on surveillance tracking systems in which computing devices are widely distributed and huge amounts of dynamic real-time data are collected and processed. Efficient surveillance tracking systems in the Big Data era require the capability of quickly abstracting useful information from the increasing amounts of data. Real-time information fusion is imperative and part of the challenge to mission critical surveillance tasks for various applications. This book presents all of these concepts, with a goal of creating automated IT systems that are capable of resolving problems without demanding human aid. - Examines the current state of surveillance tracking systems, cognitive cloud architecture for resolving critical issues in surveillance tracking systems, and research opportunities in cognitive computing for surveillance tracking systems - Discusses topics including cognitive computing architectures and approaches, cognitive computing and neural networks, complex analytics and machine learning, design of a symbiotic agent for recognizing real space in ubiquitous environments, and more - Covers supervised regression and classification methods, clustering and dimensionality reduction methods, model development for machine learning applications, intelligent machines and deep learning networks - includes coverage of cognitive computing models for scalable environments, privacy and security aspects of surveillance tracking systems, strategies and experiences in cloud architecture and service platform design