Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites

Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites
Author :
Publisher : KIT Scientific Publishing
Total Pages : 194
Release :
ISBN-10 : 9783731508182
ISBN-13 : 3731508184
Rating : 4/5 (82 Downloads)

Synopsis Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites by : Schemmann, Malte

The focus of this work lies on the microstructure-based modeling and characterization of a discontinuous fiber-reinforced thermoset in the form of sheet molding compound (SMC). A microstructure-based parameter identification scheme for SMC with an inhomogeneous fiber orientation distribution is introduced. Different cruciform specimen designs, including two concepts to reinforce the specimens' arms are evaluated. Additionally, a micromechanical mean-field damage model for the SMC is introduced.

Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites

Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites
Author :
Publisher :
Total Pages : 186
Release :
ISBN-10 : 1013278690
ISBN-13 : 9781013278693
Rating : 4/5 (90 Downloads)

Synopsis Biaxial Characterization and Mean-field Based Damage Modeling of Sheet Molding Compound Composites by : Malte Schemmann

The focus of this work lies on the microstructure-based modeling and characterization of a discontinuous fiber-reinforced thermoset in the form of sheet molding compound (SMC). A microstructure-based parameter identification scheme for SMC with an inhomogeneous fiber orientation distribution is introduced. Different cruciform specimen designs, including two concepts to reinforce the specimens' arms are evaluated. Additionally, a micromechanical mean-field damage model for the SMC is introduced. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites
Author :
Publisher : KIT Scientific Publishing
Total Pages : 204
Release :
ISBN-10 : 9783731509240
ISBN-13 : 3731509245
Rating : 4/5 (40 Downloads)

Synopsis Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites by : Kehrer, Maria Loredana

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material.

Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites

Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites
Author :
Publisher : KIT Scientific Publishing
Total Pages : 250
Release :
ISBN-10 : 9783731512325
ISBN-13 : 3731512327
Rating : 4/5 (25 Downloads)

Synopsis Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites by : Lang, Juliane

The aim of this work is to model and experimentally characterize the anisotropic material behavior of SMC composites on the macroscale with consideration of the microstructure. Temperature-dependent thermoelastic behavior and failure behavior are modeled and the corresponding material properties are determined experimentally. Additionally, experimental biaxial damage investigations are performed. A parameter identification merges modeling and experiments and validates the models.

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound
Author :
Publisher : KIT Scientific Publishing
Total Pages : 252
Release :
ISBN-10 : 9783731512622
ISBN-13 : 3731512629
Rating : 4/5 (22 Downloads)

Synopsis Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound by : Bauer, Julian Karl

Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers' orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented.

Microstructure generation and micromechanical modeling of sheet molding compound composites

Microstructure generation and micromechanical modeling of sheet molding compound composites
Author :
Publisher : KIT Scientific Publishing
Total Pages : 258
Release :
ISBN-10 : 9783731512059
ISBN-13 : 373151205X
Rating : 4/5 (59 Downloads)

Synopsis Microstructure generation and micromechanical modeling of sheet molding compound composites by : Görthofer, Johannes

Wir präsentieren einen Algorithmus zur schnellen Erzeugung von SMC Mikrostrukturen hoher Güte, durch Verwendung einer exakten Schließung und eines quasi-zufälligen Samplings. Darüber hinaus stellen wir ein modulares Framework zur Modellierung anisotroper Schädigung vor. Unser Konzept der Extraktionstensoren und Schädigungsfunktionen ermöglicht die Beschreibung komplexer Vorgänge. Darüber hinaus schlagen wir einen ganzheitlichen Multiskalenansatz zur Bestimmung anisotroper Versagenskriterien vor. - We introduce an algorithm that allows for a fast generation of SMC composite microstructures. An exact closure approximation and a quasi-random orientation sampling ensure high fidelity. Furthermore, we present a modular framework for anisotropic damage evolution. Our concept of extraction tensors and damage-hardening functions enables the description of complex damage-degradation. In addition, we propose a holistic multiscale approach for constructing anisotropic failure criteria.

A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance

A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance
Author :
Publisher : KIT Scientific Publishing
Total Pages : 182
Release :
ISBN-10 : 9783731510253
ISBN-13 : 3731510251
Rating : 4/5 (53 Downloads)

Synopsis A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance by : Prahs, Andreas

An overview of different methods for the derivation of extended continuum models is given. A gradient plasticity theory is established in the context of small deformations and single slip by considering the invariance of an extended energy balance with respect to Euclidean transformations, where the plastic slip is considered as an additional degree of freedom. Thermodynamically consistent flow rules at the grain boundary are derived. The theory is applied to a two- and a three-phase laminate.

Modeling martensitic phase transformation in dual phase steels based on a sharp interface theory

Modeling martensitic phase transformation in dual phase steels based on a sharp interface theory
Author :
Publisher : KIT Scientific Publishing
Total Pages : 220
Release :
ISBN-10 : 9783731510727
ISBN-13 : 3731510723
Rating : 4/5 (27 Downloads)

Synopsis Modeling martensitic phase transformation in dual phase steels based on a sharp interface theory by : Ruck, Johannes

artensite forms under rapid cooling of austenitic grains accompanied by a change of the crystal lattice. Large deformations are induced which lead to plastic dislocations. In this work a transformation model based on the sharp interface theory, set in a finite strain context is developed. Crystal plasticity effects, the kinetic of the singular surface as well as a simple model of the inheritance from austenite dislocations into martensite are accounted for.

A dynamic and statistical analysis of the temperature- and fatigue behavior of a race power unit – The effect of different thermodynamic states

A dynamic and statistical analysis of the temperature- and fatigue behavior of a race power unit – The effect of different thermodynamic states
Author :
Publisher : KIT Scientific Publishing
Total Pages : 294
Release :
ISBN-10 : 9783731509882
ISBN-13 : 3731509881
Rating : 4/5 (82 Downloads)

Synopsis A dynamic and statistical analysis of the temperature- and fatigue behavior of a race power unit – The effect of different thermodynamic states by : Hölz, Peter

Finite element simulation of dislocation based plasticity and diffusion in multiphase materials at high temperature

Finite element simulation of dislocation based plasticity and diffusion in multiphase materials at high temperature
Author :
Publisher : KIT Scientific Publishing
Total Pages : 222
Release :
ISBN-10 : 9783731509189
ISBN-13 : 3731509180
Rating : 4/5 (89 Downloads)

Synopsis Finite element simulation of dislocation based plasticity and diffusion in multiphase materials at high temperature by : Albiez, Jürgen

A single-crystal plasticity model as well as a gradient crystal plasticity model are used to describe the creep behavior of directionally solidi?ed NiAl based eutectic alloys. To consider the transition from theoretical to bulk strength, a hardening model was introduced to describe the strength of the reinforcing phases. Moreover, to account for microstructural changes due to material ?ux, a coupled diffusional-mechanical simulation model was introduced.