Bayesian Reasoning In Data Analysis
Download Bayesian Reasoning In Data Analysis full books in PDF, epub, and Kindle. Read online free Bayesian Reasoning In Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Giulio D'agostini |
Publisher |
: World Scientific |
Total Pages |
: 351 |
Release |
: 2003-06-13 |
ISBN-10 |
: 9789814486095 |
ISBN-13 |
: 9814486094 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Bayesian Reasoning In Data Analysis: A Critical Introduction by : Giulio D'agostini
This book provides a multi-level introduction to Bayesian reasoning (as opposed to “conventional statistics”) and its applications to data analysis. The basic ideas of this “new” approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and are shown often to coincide — under well-defined assumptions! — with “standard” methods, which can therefore be seen as special cases of the more general Bayesian methods. In dealing with uncertainty in measurements, modern metrological ideas are utilized, including the ISO classification of uncertainty into type A and type B. These are shown to fit well into the Bayesian framework.
Author |
: Andrew Gelman |
Publisher |
: CRC Press |
Total Pages |
: 677 |
Release |
: 2013-11-01 |
ISBN-10 |
: 9781439840955 |
ISBN-13 |
: 1439840954 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author |
: Jeffrey M. Stanton |
Publisher |
: Guilford Publications |
Total Pages |
: 336 |
Release |
: 2017-05-22 |
ISBN-10 |
: 9781462530267 |
ISBN-13 |
: 1462530265 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Reasoning with Data by : Jeffrey M. Stanton
Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources. ÿ Pedagogical Features *Playful, conversational style and gradual approach; suitable for students without strong math backgrounds. *End-of-chapter exercises based on real data supplied in the free R package. *Technical explanation and equation/output boxes. *Appendices on how to install R and work with the sample datasets.ÿ
Author |
: Phil Gregory |
Publisher |
: Cambridge University Press |
Total Pages |
: 498 |
Release |
: 2005-04-14 |
ISBN-10 |
: 9781139444286 |
ISBN-13 |
: 113944428X |
Rating |
: 4/5 (86 Downloads) |
Synopsis Bayesian Logical Data Analysis for the Physical Sciences by : Phil Gregory
Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.
Author |
: David Barber |
Publisher |
: Cambridge University Press |
Total Pages |
: 739 |
Release |
: 2012-02-02 |
ISBN-10 |
: 9780521518147 |
ISBN-13 |
: 0521518148 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Bayesian Reasoning and Machine Learning by : David Barber
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.
Author |
: Giulio D'Agostini |
Publisher |
: World Scientific |
Total Pages |
: 351 |
Release |
: 2003 |
ISBN-10 |
: 9789812383563 |
ISBN-13 |
: 9812383565 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Bayesian Reasoning in Data Analysis by : Giulio D'Agostini
A multi-level introduction to Bayesian reasoning. The basic ideas of this approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; comparison of hypotheses; and more.
Author |
: Simon Jackman |
Publisher |
: John Wiley & Sons |
Total Pages |
: 598 |
Release |
: 2009-10-27 |
ISBN-10 |
: 0470686634 |
ISBN-13 |
: 9780470686638 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Bayesian Analysis for the Social Sciences by : Simon Jackman
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Author |
: Will Kurt |
Publisher |
: No Starch Press |
Total Pages |
: 258 |
Release |
: 2019-07-09 |
ISBN-10 |
: 9781593279561 |
ISBN-13 |
: 1593279566 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Bayesian Statistics the Fun Way by : Will Kurt
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Author |
: Adnan Darwiche |
Publisher |
: Cambridge University Press |
Total Pages |
: 561 |
Release |
: 2009-04-06 |
ISBN-10 |
: 9780521884389 |
ISBN-13 |
: 0521884381 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Modeling and Reasoning with Bayesian Networks by : Adnan Darwiche
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.
Author |
: Franzi Korner-Nievergelt |
Publisher |
: Academic Press |
Total Pages |
: 329 |
Release |
: 2015-04-04 |
ISBN-10 |
: 9780128016787 |
ISBN-13 |
: 0128016787 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan by : Franzi Korner-Nievergelt
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco