Basics Of Artificial Intelligence Machine Learning
Download Basics Of Artificial Intelligence Machine Learning full books in PDF, epub, and Kindle. Read online free Basics Of Artificial Intelligence Machine Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dr Dheeraj Mehrotra |
Publisher |
: Notion Press |
Total Pages |
: 77 |
Release |
: 2019-06-03 |
ISBN-10 |
: 9781645872832 |
ISBN-13 |
: 1645872831 |
Rating |
: 4/5 (32 Downloads) |
Synopsis BASICS OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING by : Dr Dheeraj Mehrotra
The concept of Artificial Intelligence (AI) & Machine Learning (ML) has been in practice for over years with the advent of technological progress. Over time, it has blended our lives through nearly every narration of learning, teaching, enjoyment, normal routine operations and what not. The aspect delivers a common understanding of the topics with reference to it making an impact on our lives, with a better framework of technology affecting our lives in particular. Let us look up to science for a change to be brought about in us. Let us create awareness of making technology available to people, in a broader sense. As that happens, people who are responsible need to be told about the use and misuse of the same. As we lead our lives, we come across the fact that AI, Robotics and Learning Machines seem to be the household topic of discussion. Earlier, AI was perceived to be reserved for only ‘Geniuses’ or ‘Researchers’ or the ‘computer’ community, but it very aptly integrates and impacts each and every aspect of our lives. Knowingly or unknowingly, it has become intellectually influential in shaping our thoughts, actions and the day-to-day chores.
Author |
: Zsolt Nagy |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 330 |
Release |
: 2018-12-12 |
ISBN-10 |
: 9781789809206 |
ISBN-13 |
: 1789809207 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Artificial Intelligence and Machine Learning Fundamentals by : Zsolt Nagy
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Author |
: Tom Taulli |
Publisher |
: Apress |
Total Pages |
: 195 |
Release |
: 2019-08-01 |
ISBN-10 |
: 9781484250280 |
ISBN-13 |
: 1484250281 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Artificial Intelligence Basics by : Tom Taulli
Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and many more. In our modern era, an understanding of AI and its possibilities for your organization is essential for growth and success. Artificial Intelligence Basics has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life. Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and Artificial Intelligence Basics is the indispensable guide that you’ve been seeking. What You Will Learn Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing)Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch FixUnderstand how AI capabilities for robots can improve businessDeploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer serviceAvoid costly gotchasRecognize ethical concerns and other risk factors of using artificial intelligenceExamine the secular trends and how they may impact your business Who This Book Is For Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
Author |
: Dale Lane |
Publisher |
: No Starch Press |
Total Pages |
: 290 |
Release |
: 2021-01-19 |
ISBN-10 |
: 9781718500570 |
ISBN-13 |
: 1718500572 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Machine Learning for Kids by : Dale Lane
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Author |
: N. Gupta |
Publisher |
: Mercury Learning and Information |
Total Pages |
: 332 |
Release |
: 2020-02-18 |
ISBN-10 |
: 9781683925156 |
ISBN-13 |
: 1683925157 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Artificial Intelligence Basics by : N. Gupta
Designed as a self-teaching introduction to the fundamental concepts of artificial intelligence, the book begins with its history, the Turing test, and early applications. Later chapters cover the basics of searching, game playing, and knowledge representation. Expert systems and machine learning are covered in detail, followed by separate programming chapters on Prolog and Python. The concluding chapter on artificial intelligence machines and robotics is comprehensive with numerous modern applications. Features: Covers an introduction to concepts related to AI, including searching processes, knowledge representation, machine learning, expert systems, programming, and robotics Includes separate chapters on Prolog and Python to introduce basic programming techniques in AI
Author |
: Ameet V Joshi |
Publisher |
: Springer Nature |
Total Pages |
: 262 |
Release |
: 2019-09-24 |
ISBN-10 |
: 9783030266226 |
ISBN-13 |
: 3030266222 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Machine Learning and Artificial Intelligence by : Ameet V Joshi
This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations.
Author |
: John Anderson |
Publisher |
: |
Total Pages |
: |
Release |
: 19?? |
ISBN-10 |
: OCLC:632850500 |
ISBN-13 |
: |
Rating |
: 4/5 (00 Downloads) |
Synopsis Proceedings of the international conference on Machine Learning by : John Anderson
Author |
: Wolfgang Ertel |
Publisher |
: Springer |
Total Pages |
: 365 |
Release |
: 2018-01-18 |
ISBN-10 |
: 9783319584874 |
ISBN-13 |
: 3319584871 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Introduction to Artificial Intelligence by : Wolfgang Ertel
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.
Author |
: Alison Cawsey |
Publisher |
: Pearson |
Total Pages |
: 204 |
Release |
: 1998 |
ISBN-10 |
: 0135717795 |
ISBN-13 |
: 9780135717790 |
Rating |
: 4/5 (95 Downloads) |
Synopsis The Essence of Artificial Intelligence by : Alison Cawsey
A concise, practical introduction to artificial intelligence, this title starts with the fundamentals of knowledge representation, inference, expert systems, natural language processing, machine learning, neural networks, agents, robots, and much more. Examples and algorithms are presented throughout, and the book includes a complete glossary.
Author |
: Shan-e-Fatima |
Publisher |
: Blue Rose Publishers |
Total Pages |
: 189 |
Release |
: 2023-09-25 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Introduction to Machine Learning by : Shan-e-Fatima
With the use of machine learning (ML), which is a form of artificial intelligence (AI), software programmers may predict outcomes more accurately without having to be explicitly instructed to do so. In order to forecast new output values, machine learning algorithms use historical data as input. Machine learning is frequently used in recommendation engines. Business process automation (BPA), predictive maintenance, spam filtering, malware threat detection, and fraud detection are a few additional common uses. Machine learning is significant because it aids in the development of new goods and provides businesses with a picture of trends in consumer behavior and operational business patterns. For many businesses, machine learning has emerged as a key competitive differentiation. The fundamental methods of machine learning are covered in the current book.