Basic Structures Of Function Field Arithmetic
Download Basic Structures Of Function Field Arithmetic full books in PDF, epub, and Kindle. Read online free Basic Structures Of Function Field Arithmetic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David Goss |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 433 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642614804 |
ISBN-13 |
: 3642614809 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Basic Structures of Function Field Arithmetic by : David Goss
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Author |
: David Goss |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 444 |
Release |
: 1997-11-18 |
ISBN-10 |
: 3540635416 |
ISBN-13 |
: 9783540635413 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Basic Structures of Function Field Arithmetic by : David Goss
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Author |
: Dinesh S. Thakur |
Publisher |
: World Scientific |
Total Pages |
: 405 |
Release |
: 2004 |
ISBN-10 |
: 9789812562388 |
ISBN-13 |
: 9812562389 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Function Field Arithmetic by : Dinesh S. Thakur
This book provides an exposition of function field arithmetic withemphasis on recent developments concerning Drinfeld modules, thearithmetic of special values of transcendental functions (such as zetaand gamma functions and their interpolations), diophantineapproximation and related interesting open problems.
Author |
: Michael D. Fried |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 812 |
Release |
: 2005 |
ISBN-10 |
: 354022811X |
ISBN-13 |
: 9783540228110 |
Rating |
: 4/5 (1X Downloads) |
Synopsis Field Arithmetic by : Michael D. Fried
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Author |
: Dinesh S. Thakur |
Publisher |
: World Scientific |
Total Pages |
: 405 |
Release |
: 2004 |
ISBN-10 |
: 9789812388391 |
ISBN-13 |
: 9812388397 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Function Field Arithmetic by : Dinesh S. Thakur
This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
Author |
: Gebhard Böckle |
Publisher |
: Springer |
Total Pages |
: 350 |
Release |
: 2014-11-13 |
ISBN-10 |
: 9783034808538 |
ISBN-13 |
: 3034808534 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Arithmetic Geometry over Global Function Fields by : Gebhard Böckle
This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.
Author |
: Gerard B. M. van der Geer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 323 |
Release |
: 2006-11-24 |
ISBN-10 |
: 9780817644475 |
ISBN-13 |
: 0817644474 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Number Fields and Function Fields – Two Parallel Worlds by : Gerard B. M. van der Geer
Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections
Author |
: Bruno Anglès |
Publisher |
: Springer Nature |
Total Pages |
: 337 |
Release |
: 2021-03-03 |
ISBN-10 |
: 9783030662493 |
ISBN-13 |
: 3030662497 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Arithmetic and Geometry over Local Fields by : Bruno Anglès
This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.
Author |
: Henning Stichtenoth |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 360 |
Release |
: 2009-02-11 |
ISBN-10 |
: 9783540768784 |
ISBN-13 |
: 3540768785 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Algebraic Function Fields and Codes by : Henning Stichtenoth
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Author |
: Michael Rosen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 355 |
Release |
: 2013-04-18 |
ISBN-10 |
: 9781475760460 |
ISBN-13 |
: 1475760469 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Number Theory in Function Fields by : Michael Rosen
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.