Basic Analysis I

Basic Analysis I
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 282
Release :
ISBN-10 : 1718862407
ISBN-13 : 9781718862401
Rating : 4/5 (07 Downloads)

Synopsis Basic Analysis I by : Jiri Lebl

Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.

Basic Analysis I

Basic Analysis I
Author :
Publisher : CRC Press
Total Pages : 595
Release :
ISBN-10 : 9781351679459
ISBN-13 : 1351679457
Rating : 4/5 (59 Downloads)

Synopsis Basic Analysis I by : James K. Peterson

Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Basic Real Analysis

Basic Real Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 671
Release :
ISBN-10 : 9780817644413
ISBN-13 : 0817644415
Rating : 4/5 (13 Downloads)

Synopsis Basic Real Analysis by : Anthony W. Knapp

Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.

Basic Real Analysis

Basic Real Analysis
Author :
Publisher : Springer
Total Pages : 687
Release :
ISBN-10 : 9781493918416
ISBN-13 : 1493918419
Rating : 4/5 (16 Downloads)

Synopsis Basic Real Analysis by : Houshang H. Sohrab

This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews

Basic Analysis of Regularized Series and Products

Basic Analysis of Regularized Series and Products
Author :
Publisher : Springer
Total Pages : 127
Release :
ISBN-10 : 9783540481935
ISBN-13 : 3540481931
Rating : 4/5 (35 Downloads)

Synopsis Basic Analysis of Regularized Series and Products by : Jay Jorgenson

Analytic number theory and part of the spectral theory of operators (differential, pseudo-differential, elliptic, etc.) are being merged under amore general analytic theory of regularized products of certain sequences satisfying a few basic axioms. The most basic examples consist of the sequence of natural numbers, the sequence of zeros with positive imaginary part of the Riemann zeta function, and the sequence of eigenvalues, say of a positive Laplacian on a compact or certain cases of non-compact manifolds. The resulting theory is applicable to ergodic theory and dynamical systems; to the zeta and L-functions of number theory or representation theory and modular forms; to Selberg-like zeta functions; andto the theory of regularized determinants familiar in physics and other parts of mathematics. Aside from presenting a systematic account of widely scattered results, the theory also provides new results. One part of the theory deals with complex analytic properties, and another part deals with Fourier analysis. Typical examples are given. This LNM provides basic results which are and will be used in further papers, starting with a general formulation of Cram r's theorem and explicit formulas. The exposition is self-contained (except for far-reaching examples), requiring only standard knowledge of analysis.

Basic Real Analysis

Basic Real Analysis
Author :
Publisher : Jones & Bartlett Learning
Total Pages : 233
Release :
ISBN-10 : 9780763773182
ISBN-13 : 0763773182
Rating : 4/5 (82 Downloads)

Synopsis Basic Real Analysis by : James Howland

Ideal for the one-semester undergraduate course, Basic Real Analysis is intended for students who have recently completed a traditional calculus course and proves the basic theorems of Single Variable Calculus in a simple and accessible manner. It gradually builds upon key material as to not overwhelm students beginning the course and becomes more rigorous as they progresses. Optional appendices on sets and functions, countable and uncountable sets, and point set topology are included for those instructors who wish include these topics in their course. The author includes hints throughout the text to help students solve challenging problems. An online instructor's solutions manual is also available.

Basic Elements of Real Analysis

Basic Elements of Real Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 284
Release :
ISBN-10 : 9780387227498
ISBN-13 : 0387227490
Rating : 4/5 (98 Downloads)

Synopsis Basic Elements of Real Analysis by : Murray H. Protter

From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.

Basic Analysis: Japanese Grade 11

Basic Analysis: Japanese Grade 11
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 9780821805800
ISBN-13 : 0821805800
Rating : 4/5 (00 Downloads)

Synopsis Basic Analysis: Japanese Grade 11 by : 小平邦彦

"This is the translation of the Japanese textbook for the grade 11 course, "Basic Analysis", which is one of three elective courses offered at this level in Japanese high schools. The book includes a thorough treatment of exponential, logarithmic, and trigonometric functions, progressions, and induction method, as well as an extensive introduction to differential and integral calculus."--Publisher.

Basic Analysis II

Basic Analysis II
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 196
Release :
ISBN-10 : 1718865481
ISBN-13 : 9781718865488
Rating : 4/5 (81 Downloads)

Synopsis Basic Analysis II by : Jiri Lebl

Version 2.0. The second volume of Basic Analysis, a first course in mathematical analysis. This volume is the second semester material for a year-long sequence for advanced undergraduates or masters level students. This volume started with notes for Math 522 at University of Wisconsin-Madison, and then was heavily revised and modified for teaching Math 4153/5053 at Oklahoma State University. It covers differential calculus in several variables, line integrals, multivariable Riemann integral including a basic case of Green's Theorem, and topics on power series, Arzelà-Ascoli, Stone-Weierstrass, and Fourier Series. See http://www.jirka.org/ra/ Table of Contents (of this volume II): 8. Several Variables and Partial Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits

A Basic Course in Real Analysis

A Basic Course in Real Analysis
Author :
Publisher : CRC Press
Total Pages : 320
Release :
ISBN-10 : 9781482216387
ISBN-13 : 1482216388
Rating : 4/5 (87 Downloads)

Synopsis A Basic Course in Real Analysis by : Ajit Kumar

Based on the authors’ combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage.