Averaging Methods In Nonlinear Dynamical Systems
Download Averaging Methods In Nonlinear Dynamical Systems full books in PDF, epub, and Kindle. Read online free Averaging Methods In Nonlinear Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jan A. Sanders |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 259 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9781475745757 |
ISBN-13 |
: 1475745753 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Averaging Methods in Nonlinear Dynamical Systems by : Jan A. Sanders
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Author |
: Ferdinand Verhulst |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 287 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642971495 |
ISBN-13 |
: 3642971490 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Nonlinear Differential Equations and Dynamical Systems by : Ferdinand Verhulst
Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.
Author |
: John Guckenheimer |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 475 |
Release |
: 2013-11-21 |
ISBN-10 |
: 9781461211402 |
ISBN-13 |
: 1461211409 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by : John Guckenheimer
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Author |
: Steven H. Strogatz |
Publisher |
: CRC Press |
Total Pages |
: 532 |
Release |
: 2018-05-04 |
ISBN-10 |
: 9780429961113 |
ISBN-13 |
: 0429961111 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Author |
: Jan A. Sanders |
Publisher |
: |
Total Pages |
: 264 |
Release |
: 2014-01-15 |
ISBN-10 |
: 1475745761 |
ISBN-13 |
: 9781475745764 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Averaging Methods in Nonlinear Dynamical Systems by : Jan A. Sanders
Author |
: H.G Solari |
Publisher |
: Routledge |
Total Pages |
: 369 |
Release |
: 2019-01-22 |
ISBN-10 |
: 9781351428309 |
ISBN-13 |
: 1351428306 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Nonlinear Dynamics by : H.G Solari
Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work
Author |
: John Guckenheimer |
Publisher |
: |
Total Pages |
: 484 |
Release |
: 2014-09-01 |
ISBN-10 |
: 1461211417 |
ISBN-13 |
: 9781461211419 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by : John Guckenheimer
Author |
: John Seimenis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 417 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9781489909640 |
ISBN-13 |
: 1489909648 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Hamiltonian Mechanics by : John Seimenis
This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.
Author |
: Ali H. Nayfeh |
Publisher |
: John Wiley & Sons |
Total Pages |
: 344 |
Release |
: 2011-08-29 |
ISBN-10 |
: 9783527410972 |
ISBN-13 |
: 352741097X |
Rating |
: 4/5 (72 Downloads) |
Synopsis The Method of Normal Forms by : Ali H. Nayfeh
In this introductory treatment Ali Nayfeh presents different concepts from dynamical systems theory and nonlinear dynamics in a rigorous yet plan way. He systematically introduces models and techniques and states the relevant ranges of validity and applicability. The reader is provided with a clear operational framework for consciously use rather than focused on the underlying mathematical apparatus. The exposition is largely by means of examples, dealt with up to their final outcome. For most of the examples, the results obtained with the method of normal forms are equivalent to those obtained with other perturbation methods, such as the method of multiple scales and the method of averaging. The previous edition had a remarkable success by researchers from all over the world working in the area of nonlinear dynamics and their applications in engineering. Additions to this new edition concern major topics of current interest. In particular, the author added three new chapters dedicated to Maps, Bifurcations of Continuous Systems, and Retarded Systems. In particular the latter has become of major importance in several applications, both in mechanics and in different areas. Accessible to engineers and applied scientist involved with nonlinear dynamics and their applications in a wide variety of fields. It is assumed that readers have a knowledge of basic calculus as well as the elementary properties of ordinary-differential equations.
Author |
: Christian L. E. Franzke |
Publisher |
: Cambridge University Press |
Total Pages |
: 612 |
Release |
: 2017-01-19 |
ISBN-10 |
: 9781316883211 |
ISBN-13 |
: 1316883213 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Nonlinear and Stochastic Climate Dynamics by : Christian L. E. Franzke
It is now widely recognized that the climate system is governed by nonlinear, multi-scale processes, whereby memory effects and stochastic forcing by fast processes, such as weather and convective systems, can induce regime behavior. Motivated by present difficulties in understanding the climate system and to aid the improvement of numerical weather and climate models, this book gathers contributions from mathematics, physics and climate science to highlight the latest developments and current research questions in nonlinear and stochastic climate dynamics. Leading researchers discuss some of the most challenging and exciting areas of research in the mathematical geosciences, such as the theory of tipping points and of extreme events including spatial extremes, climate networks, data assimilation and dynamical systems. This book provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians.