Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1
Author :
Publisher : Cambridge University Press
Total Pages : 0
Release :
ISBN-10 : 1107691923
ISBN-13 : 9781107691926
Rating : 4/5 (23 Downloads)

Synopsis Automorphic Forms and Galois Representations: Volume 1 by : Fred Diamond

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.

Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1
Author :
Publisher : Cambridge University Press
Total Pages : 385
Release :
ISBN-10 : 9781316062333
ISBN-13 : 1316062333
Rating : 4/5 (33 Downloads)

Synopsis Automorphic Forms and Galois Representations: Volume 1 by : Fred Diamond

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.

Representation Theory and Automorphic Forms

Representation Theory and Automorphic Forms
Author :
Publisher : Springer Science & Business Media
Total Pages : 220
Release :
ISBN-10 : 9780817646462
ISBN-13 : 0817646469
Rating : 4/5 (62 Downloads)

Synopsis Representation Theory and Automorphic Forms by : Toshiyuki Kobayashi

This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.

Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves
Author :
Publisher : CRC Press
Total Pages : 203
Release :
ISBN-10 : 9781439863862
ISBN-13 : 1439863865
Rating : 4/5 (62 Downloads)

Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one

Modular Forms and Galois Cohomology

Modular Forms and Galois Cohomology
Author :
Publisher : Cambridge University Press
Total Pages : 358
Release :
ISBN-10 : 052177036X
ISBN-13 : 9780521770361
Rating : 4/5 (6X Downloads)

Synopsis Modular Forms and Galois Cohomology by : Haruzo Hida

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.

Automorphic Forms on GL (3,TR)

Automorphic Forms on GL (3,TR)
Author :
Publisher : Springer
Total Pages : 196
Release :
ISBN-10 : 9783540390558
ISBN-13 : 3540390553
Rating : 4/5 (58 Downloads)

Synopsis Automorphic Forms on GL (3,TR) by : D. Bump

A First Course in Modular Forms

A First Course in Modular Forms
Author :
Publisher : Springer Science & Business Media
Total Pages : 462
Release :
ISBN-10 : 9780387272269
ISBN-13 : 0387272267
Rating : 4/5 (69 Downloads)

Synopsis A First Course in Modular Forms by : Fred Diamond

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

The Eigenbook

The Eigenbook
Author :
Publisher : Springer Nature
Total Pages : 319
Release :
ISBN-10 : 9783030772635
ISBN-13 : 3030772632
Rating : 4/5 (35 Downloads)

Synopsis The Eigenbook by : Joël Bellaïche

​This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.

Automorphic Forms on GL (2)

Automorphic Forms on GL (2)
Author :
Publisher : Springer
Total Pages : 156
Release :
ISBN-10 : 9783540376125
ISBN-13 : 3540376127
Rating : 4/5 (25 Downloads)

Synopsis Automorphic Forms on GL (2) by : H. Jacquet

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem
Author :
Publisher : Springer Science & Business Media
Total Pages : 592
Release :
ISBN-10 : 9781461219743
ISBN-13 : 1461219744
Rating : 4/5 (43 Downloads)

Synopsis Modular Forms and Fermat’s Last Theorem by : Gary Cornell

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.