Atoms, Molecules and Photons

Atoms, Molecules and Photons
Author :
Publisher : Springer
Total Pages : 561
Release :
ISBN-10 : 9783662555231
ISBN-13 : 3662555239
Rating : 4/5 (31 Downloads)

Synopsis Atoms, Molecules and Photons by : Wolfgang Demtröder

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.

Atoms, Molecules and Photons

Atoms, Molecules and Photons
Author :
Publisher : Springer Science & Business Media
Total Pages : 601
Release :
ISBN-10 : 9783642102981
ISBN-13 : 3642102980
Rating : 4/5 (81 Downloads)

Synopsis Atoms, Molecules and Photons by : Wolfgang Demtröder

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed during the last two centuries by many experimental discoveries and from the theoretical side by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions should induce the reader to an intense active cooperation.

Controlling the Quantum World

Controlling the Quantum World
Author :
Publisher : National Academies Press
Total Pages : 245
Release :
ISBN-10 : 9780309102704
ISBN-13 : 0309102707
Rating : 4/5 (04 Downloads)

Synopsis Controlling the Quantum World by : National Research Council

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Engineering the Atom-Photon Interaction

Engineering the Atom-Photon Interaction
Author :
Publisher : Springer
Total Pages : 410
Release :
ISBN-10 : 9783319192314
ISBN-13 : 3319192310
Rating : 4/5 (14 Downloads)

Synopsis Engineering the Atom-Photon Interaction by : Ana Predojević

This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author :
Publisher : Springer Science & Business Media
Total Pages : 362
Release :
ISBN-10 : 9781461506119
ISBN-13 : 1461506115
Rating : 4/5 (19 Downloads)

Synopsis Introduction to the Theory of Collisions of Electrons with Atoms and Molecules by : S.P. Khare

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.

Relativistic Quantum Theory of Atoms and Molecules

Relativistic Quantum Theory of Atoms and Molecules
Author :
Publisher : Springer Science & Business Media
Total Pages : 813
Release :
ISBN-10 : 9780387350691
ISBN-13 : 0387350691
Rating : 4/5 (91 Downloads)

Synopsis Relativistic Quantum Theory of Atoms and Molecules by : Ian P Grant

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.

Laser Spectroscopy 2

Laser Spectroscopy 2
Author :
Publisher : Springer
Total Pages : 773
Release :
ISBN-10 : 9783662446416
ISBN-13 : 3662446413
Rating : 4/5 (16 Downloads)

Synopsis Laser Spectroscopy 2 by : Wolfgang Demtröder

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

Atom-Photon Interactions

Atom-Photon Interactions
Author :
Publisher : John Wiley & Sons
Total Pages : 691
Release :
ISBN-10 : 9780471293361
ISBN-13 : 0471293369
Rating : 4/5 (61 Downloads)

Synopsis Atom-Photon Interactions by : Claude Cohen-Tannoudji

Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.

Electrons, Atoms, and Molecules in Inorganic Chemistry

Electrons, Atoms, and Molecules in Inorganic Chemistry
Author :
Publisher : Academic Press
Total Pages : 764
Release :
ISBN-10 : 9780128110492
ISBN-13 : 012811049X
Rating : 4/5 (92 Downloads)

Synopsis Electrons, Atoms, and Molecules in Inorganic Chemistry by : Joseph J. Stephanos

Electrons, Atoms, and Molecules in Inorganic Chemistry: A Worked Examples Approach builds from fundamental units into molecules, to provide the reader with a full understanding of inorganic chemistry concepts through worked examples and full color illustrations. The book uniquely discusses failures as well as research success stories. Worked problems include a variety of types of chemical and physical data, illustrating the interdependence of issues. This text contains a bibliography providing access to important review articles and papers of relevance, as well as summaries of leading articles and reviews at the end of each chapter so interested readers can readily consult the original literature. Suitable as a professional reference for researchers in a variety of fields, as well as course use and self-study. The book offers valuable information to fill an important gap in the field. - Incorporates questions and answers to assist readers in understanding a variety of problem types - Includes detailed explanations and developed practical approaches for solving real chemical problems - Includes a range of example levels, from classic and simple for basic concepts to complex questions for more sophisticated topics - Covers the full range of topics in inorganic chemistry: electrons and wave-particle duality, electrons in atoms, chemical binding, molecular symmetry, theories of bonding, valence bond theory, VSEPR theory, orbital hybridization, molecular orbital theory, crystal field theory, ligand field theory, electronic spectroscopy, vibrational and rotational spectroscopy