Asymptotic Methods in Equations of Mathematical Physics

Asymptotic Methods in Equations of Mathematical Physics
Author :
Publisher : CRC Press
Total Pages : 516
Release :
ISBN-10 : 2881246648
ISBN-13 : 9782881246647
Rating : 4/5 (48 Downloads)

Synopsis Asymptotic Methods in Equations of Mathematical Physics by : B Vainberg

Typed English translation of a monograph first published (in Russian) in 1982. Provides graduate students and researchers with usefully detailed discussion of most of the asymptotic methods standard these days to the work of mathematical physicists. The author prefers not to dwell in the heights of abstraction; he has written a broadly intelligble book, which is informed at every point by his secure command of major physical applications. An expensive but valuable contribution to the literature of an important but too-little-written- about field. Twelve chapters, references. (NW) Annotation copyrighted by Book News, Inc., Portland, OR

Introduction to Asymptotic Methods

Introduction to Asymptotic Methods
Author :
Publisher : CRC Press
Total Pages : 270
Release :
ISBN-10 : 9781420011739
ISBN-13 : 1420011731
Rating : 4/5 (39 Downloads)

Synopsis Introduction to Asymptotic Methods by : David Y. Gao

Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m

Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I
Author :
Publisher : Springer Science & Business Media
Total Pages : 605
Release :
ISBN-10 : 9781475730692
ISBN-13 : 1475730691
Rating : 4/5 (92 Downloads)

Synopsis Advanced Mathematical Methods for Scientists and Engineers I by : Carl M. Bender

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.

Partial Differential Equations V

Partial Differential Equations V
Author :
Publisher : Springer
Total Pages : 247
Release :
ISBN-10 : 3642584241
ISBN-13 : 9783642584244
Rating : 4/5 (41 Downloads)

Synopsis Partial Differential Equations V by : M.V. Fedoryuk

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Partial Differential Equations V

Partial Differential Equations V
Author :
Publisher : Springer Science & Business Media
Total Pages : 248
Release :
ISBN-10 : 9783642584237
ISBN-13 : 3642584233
Rating : 4/5 (37 Downloads)

Synopsis Partial Differential Equations V by : M.V. Fedoryuk

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Asymptotic Methods for Wave and Quantum Problems

Asymptotic Methods for Wave and Quantum Problems
Author :
Publisher : American Mathematical Soc.
Total Pages : 298
Release :
ISBN-10 : 0821833367
ISBN-13 : 9780821833360
Rating : 4/5 (67 Downloads)

Synopsis Asymptotic Methods for Wave and Quantum Problems by : M. V. Karasev

The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.

Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains

Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains
Author :
Publisher : Springer Nature
Total Pages : 404
Release :
ISBN-10 : 9783030653729
ISBN-13 : 3030653722
Rating : 4/5 (29 Downloads)

Synopsis Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains by : Dmitrii Korikov

This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.

Asymptotic Methods for Engineers

Asymptotic Methods for Engineers
Author :
Publisher : CRC Press
Total Pages : 409
Release :
ISBN-10 : 9781040032770
ISBN-13 : 104003277X
Rating : 4/5 (70 Downloads)

Synopsis Asymptotic Methods for Engineers by : Igor V. Andrianov

Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 242
Release :
ISBN-10 : 3540644350
ISBN-13 : 9783540644354
Rating : 4/5 (50 Downloads)

Synopsis Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications by : Johan Grasman

Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.