Assisted History Matching for Unconventional Reservoirs

Assisted History Matching for Unconventional Reservoirs
Author :
Publisher : Gulf Professional Publishing
Total Pages : 290
Release :
ISBN-10 : 9780128222430
ISBN-13 : 0128222433
Rating : 4/5 (30 Downloads)

Synopsis Assisted History Matching for Unconventional Reservoirs by : Sutthaporn Tripoppoom

As unconventional reservoir activity grows in demand, reservoir engineers relying on history matching are challenged with this time-consuming task in order to characterize hydraulic fracture and reservoir properties, which are expensive and difficult to obtain. Assisted History Matching for Unconventional Reservoirs delivers a critical tool for today's engineers proposing an Assisted History Matching (AHM) workflow. The AHM workflow has benefits of quantifying uncertainty without bias or being trapped in any local minima and this reference helps the engineer integrate an efficient and non-intrusive model for fractures that work with any commercial simulator. Additional benefits include various applications of field case studies such as the Marcellus shale play and visuals on the advantages and disadvantages of alternative models. Rounding out with additional references for deeper learning, Assisted History Matching for Unconventional Reservoirs gives reservoir engineers a holistic view on how to model today's fractures and unconventional reservoirs. - Provides understanding on simulations for hydraulic fractures, natural fractures, and shale reservoirs using embedded discrete fracture model (EDFM) - Reviews automatic and assisted history matching algorithms including visuals on advantages and limitations of each model - Captures data on uncertainties of fractures and reservoir properties for better probabilistic production forecasting and well placement

Assisted History Matching Workflow for Unconventional Reservoirs

Assisted History Matching Workflow for Unconventional Reservoirs
Author :
Publisher :
Total Pages : 448
Release :
ISBN-10 : OCLC:1107324151
ISBN-13 :
Rating : 4/5 (51 Downloads)

Synopsis Assisted History Matching Workflow for Unconventional Reservoirs by : Sutthaporn Tripoppoom

The information of fractures geometry and reservoir properties can be retrieved from the production data, which is always available at no additional cost. However, in unconventional reservoirs, it is insufficient to obtain only one realization because the non-uniqueness of history matching and subsurface uncertainties cannot be captured. Therefore, the objective of this study is to obtain multiple realizations in shale reservoirs by adopting Assisted History Matching (AHM). We used multiple proxy-based Markov Chain Monte Carlo (MCMC) algorithm and Embedded Discrete Fracture Model (EDFM) to perform AHM. The reason is that MCMC has benefits of quantifying uncertainty without bias or being trapped in any local minima. Also, using MCMC with proxy model unlocks the limitation of an infeasible number of simulations required by a traditional MCMC algorithm. For fractures modeling, EDFM can mimic fractures flow behavior with a higher computational efficiency than a traditional local grid refinement (LGR) method and more accuracy than the continuum approach. We applied the AHM workflow to actual shale gas wells. We found that the algorithm can find multiple history matching solutions and quantify the fractures and reservoir properties posterior distributions. Then, we predicted the production probabilistically. Moreover, we investigated the performance of neural network (NN) and k-nearest neighbors (KNN) as a proxy model in the proxy-based MCMC algorithm. We found that NN performed better in term of accuracy than KNN but NN required twice running time of KNN. Lastly, we studied the effect of enhanced permeability area (EPA) and natural fractures existence on the history matching solutions and production forecast. We concluded that we would over-predict fracture geometries and properties and estimated ultimate recovery (EUR) if we assumed no EPA or no natural fractures even though they actually existed. The degree of over-prediction depends on fractures and reservoir properties, EPA and natural fractures properties, which can only be quantified after performing AHM. The benefits from this study are that we can characterize fractures geometry, reservoir properties, and natural fractures in a probabilistic manner. These multiple realizations can be further used for a probabilistic production forecast, future fracturing design improvement, and infill well placement decision

A Probabilistic Workflow for Uncertainty Analysis Using a Proxy-based Approach Applied to Tight Reservoir Simulation Studies

A Probabilistic Workflow for Uncertainty Analysis Using a Proxy-based Approach Applied to Tight Reservoir Simulation Studies
Author :
Publisher :
Total Pages : 432
Release :
ISBN-10 : OCLC:961221890
ISBN-13 :
Rating : 4/5 (90 Downloads)

Synopsis A Probabilistic Workflow for Uncertainty Analysis Using a Proxy-based Approach Applied to Tight Reservoir Simulation Studies by : Marut Wantawin

Uncertainty associated with reservoir simulation studies should be thoroughly captured during history matching process and adequately explained during production forecasts. Lacking information and limited accuracy of measurements typically cause uncertain reservoir properties in the reservoir simulation models. Unconventional tight reservoirs, for instances, often deal with complex dynamic flow behavior and inexact dimensions of hydraulic fractures that directly affect production estimation. Non-unique history matching solutions on the basis of probabilistic logic are recognized in order to avoid underestimating prediction results. Assisted history matching techniques have been widely proposed in many literature to quantify the uncertainty. However, few applications were done in unconventional reservoirs where some distinct uncertain factors could significantly influence well performance. In this thesis, a probabilistic workflow was developed using proxy-modeling approach to encompass uncertain parameters of unconventional reservoirs and obtain reliable prediction. Proxy-models were constructed by Design of Experiments (DoE) and Response Surface Methodology (RSM). As preliminary screening tools, significant parameters were identified, thus removing those that were insignificant for the reduced dimensions. Furthermore, proxy-models were systematically built to approximate the actual simulation, then sampling algorithms, e.g. Markov Chain Monte Carlo (MCMC) method, successfully estimated probabilistic history matching solutions. An iterative procedure was also introduced to gradually improve the accuracy of proxy-models at the interested region with low history matching errors. The workflow was applied to case studies in Middle Bakken reservoir and Marcellus Shale formation. In addition to estimating misfit function for the errors, proxy-models are also regressed on the simulated quantity of the measurements at various points in time, which is shown to be very useful. This alternative method was utilized in a synthetic tight reservoir model, which analyzed the impact of complex fracture network relative to instantaneous well performance at different stages. The results in this thesis show that the proxy-based approach reasonably provides simplified approximation of actual simulation. Besides, they are very flexible and practical for demonstrating the non-unique history matching solutions and analyzing the probability distributions of complicated reservoir and fracture properties. Ultimately, the developed workflow delivers probabilistic production forecasts with efficient computational requirement.

Shale Gas and Tight Oil Reservoir Simulation

Shale Gas and Tight Oil Reservoir Simulation
Author :
Publisher : Gulf Professional Publishing
Total Pages : 432
Release :
ISBN-10 : 9780128138694
ISBN-13 : 0128138696
Rating : 4/5 (94 Downloads)

Synopsis Shale Gas and Tight Oil Reservoir Simulation by : Wei Yu

Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures. - Models the well performance of shale gas and tight oil reservoirs with complex fracture geometries - Teaches how to perform sensitivity studies, history matching, production forecasts, and economic optimization for shale-gas and tight-oil reservoirs - Helps readers investigate data mining techniques, including the introduction of nonparametric smoothing models

Applications of Data Management and Analysis

Applications of Data Management and Analysis
Author :
Publisher : Springer
Total Pages : 218
Release :
ISBN-10 : 9783319958101
ISBN-13 : 3319958100
Rating : 4/5 (01 Downloads)

Synopsis Applications of Data Management and Analysis by : Mohammad Moshirpour

This book addresses and examines the impacts of applications and services for data management and analysis, such as infrastructure, platforms, software, and business processes, on both academia and industry. The chapters cover effective approaches in dealing with the inherent complexity and increasing demands of big data management from an applications perspective. Various case studies included have been reported by data analysis experts who work closely with their clients in such fields as education, banking, and telecommunications. Understanding how data management has been adapted to these applications will help students, instructors and professionals in the field. Application areas also include the fields of social network analysis, bioinformatics, and the oil and gas industries.

Performance Analysis and Optimization of Well Production in Unconventional Resource Plays

Performance Analysis and Optimization of Well Production in Unconventional Resource Plays
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:868231504
ISBN-13 :
Rating : 4/5 (04 Downloads)

Synopsis Performance Analysis and Optimization of Well Production in Unconventional Resource Plays by : Baljit Singh Sehbi

The Unconventional Resource Plays consisting of the lowest tier of resources (large volumes and most difficult to develop) have been the main focus of US domestic activity during recent times. Horizontal well drilling and hydraulic fracturing completion technology have been primarily responsible for this paradigm shift. The concept of drainage volume is being examined using pressure diffusion along streamlines. We use diffusive time of flight to optimize the number of hydraulic fracture stages in horizontal well application for Tight Gas reservoirs. Numerous field case histories are available in literature for optimizing number of hydraulic fracture stages, although the conclusions are case specific. In contrast, a general method is being presented that can be used to augment field experiments necessary to optimize the number of hydraulic fracture stages. The optimization results for the tight gas example are in line with the results from economic analysis. The fluid flow simulation for Naturally Fractured Reservoirs (NFR) is performed by Dual-Permeability or Dual-Porosity formulations. Microseismic data from Barnett Shale well is used to characterize the hydraulic fracture geometry. Sensitivity analysis, uncertainty assessment, manual & computer assisted history matching are integrated to develop a comprehensive workflow for building reliable reservoir simulation models. We demonstrate that incorporating proper physics of flow is the first step in building reliable reservoir simulation models. Lack of proper physics often leads to unreasonable reservoir parameter estimates. The workflow demonstrates reduced non-uniqueness for the inverse history matching problem. The behavior of near-critical fluids in Liquid Rich Shale plays defies the production behavior observed in conventional reservoir systems. In conventional reservoirs an increased gas-oil ratio is observed as flowing bottom-hole pressure is less than the saturation pressure. The production behavior is examined by building a compositional simulation model on an Eagle Ford well. Extremely high pressure drop along the multiple transverse hydraulic fractures and high critical gas saturation are responsible for this production behavior. Integrating pore-scale flow modeling (such as Lattice Boltzmann) to the field-scale reservoir simulation may enable quantifying the effects of high capillary pressure and phase behavior alteration due to confinement in the nano-pore system. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149482

Intelligent Digital Oil and Gas Fields

Intelligent Digital Oil and Gas Fields
Author :
Publisher : Gulf Professional Publishing
Total Pages : 376
Release :
ISBN-10 : 9780128047477
ISBN-13 : 012804747X
Rating : 4/5 (77 Downloads)

Synopsis Intelligent Digital Oil and Gas Fields by : Gustavo Carvajal

Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations Includes techniques on change management and collaboration Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation
Author :
Publisher : Elsevier
Total Pages : 306
Release :
ISBN-10 : 9780128196885
ISBN-13 : 0128196882
Rating : 4/5 (85 Downloads)

Synopsis Embedded Discrete Fracture Modeling and Application in Reservoir Simulation by : Kamy Sepehrnoori

The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. - Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs - Offers understanding of the impacts of key reservoir properties and complex fractures on well performance - Provides case studies to show how to use the EDFM method for different needs

Unconventional Reservoir Rate-Transient Analysis

Unconventional Reservoir Rate-Transient Analysis
Author :
Publisher : Gulf Professional Publishing
Total Pages : 1144
Release :
ISBN-10 : 9780323901178
ISBN-13 : 0323901174
Rating : 4/5 (78 Downloads)

Synopsis Unconventional Reservoir Rate-Transient Analysis by : Christopher R. Clarkson

Unconventional Reservoir Rate-Transient Analysis provides petroleum engineers and geoscientists with the first comprehensive review of rate-transient analysis (RTA) methods as applied to unconventional reservoirs. Volume One—Fundamentals, Analysis Methods, and Workflow is comprised of five chapters which address key concepts and analysis methods used in RTA. This volume overviews the fundamentals of RTA, as applied to low-permeability oil and gas reservoirs exhibiting simple reservoir and fluid characteristics.Volume Two—Application to Complex Reservoirs, Exploration and Development is comprised of four chapters that demonstrate how RTA can be applied to coalbed methane reservoirs, shale gas reservoirs, and low-permeability/shale reservoirs exhibiting complex behavior such as multiphase flow. Use of RTA to assist exploration and development programs in unconventional reservoirs is also demonstrated. This book will serve as a critical guide for students, academics, and industry professionals interested in applying RTA methods to unconventional reservoirs. - Gain a comprehensive review of key concepts and analysis methods used in modern rate-transient analysis (RTA) as applied to low-permeability ("tight") oil and gas reservoirs - Improve your RTA methods by providing reservoir/hydraulic fracture properties and hydrocarbon-in-place estimates for unconventional gas and light oil reservoirs exhibiting complex reservoir behaviors - Understand the provision of a workflow for confident application of RTA to unconventional reservoirs

Data Analytics in Reservoir Engineering

Data Analytics in Reservoir Engineering
Author :
Publisher :
Total Pages : 108
Release :
ISBN-10 : 1613998201
ISBN-13 : 9781613998205
Rating : 4/5 (01 Downloads)

Synopsis Data Analytics in Reservoir Engineering by : Sathish Sankaran

Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.