Artificial Neural Network Applications in Business and Engineering

Artificial Neural Network Applications in Business and Engineering
Author :
Publisher : IGI Global
Total Pages : 275
Release :
ISBN-10 : 9781799832409
ISBN-13 : 1799832406
Rating : 4/5 (09 Downloads)

Synopsis Artificial Neural Network Applications in Business and Engineering by : Do, Quang Hung

In today’s modernized market, various disciplines continue to search for universally functional technologies that improve upon traditional processes. Artificial neural networks are a set of statistical modeling tools that are capable of processing nonlinear data with strong accuracy. Due to their complexity, utilizing their potential was previously seen as a challenge. However, with the development of artificial intelligence, this technology has proven to be an effective and efficient problem-solving method. Artificial Neural Network Applications in Business and Engineering is an essential reference source that illustrates recent advancements of artificial neural networks in various professional fields, accompanied by specific case studies and practical examples. Featuring research on topics such as training algorithms, transportation, and computer security, this book is ideally designed for researchers, students, developers, managers, engineers, academicians, industrialists, policymakers, and educators seeking coverage on modern trends in artificial neural networks and their real-world implementations.

Artificial Neural Networks for Engineering Applications

Artificial Neural Networks for Engineering Applications
Author :
Publisher : Academic Press
Total Pages : 176
Release :
ISBN-10 : 9780128182475
ISBN-13 : 0128182474
Rating : 4/5 (75 Downloads)

Synopsis Artificial Neural Networks for Engineering Applications by : Alma Y Alanis

Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning
Author :
Publisher : Engineering Science Reference
Total Pages :
Release :
ISBN-10 : 1799884554
ISBN-13 : 9781799884552
Rating : 4/5 (54 Downloads)

Synopsis Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning by : Richard Segall

"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--

Research Anthology on Artificial Neural Network Applications

Research Anthology on Artificial Neural Network Applications
Author :
Publisher : IGI Global
Total Pages : 1575
Release :
ISBN-10 : 9781668424094
ISBN-13 : 1668424096
Rating : 4/5 (94 Downloads)

Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources

Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications
Author :
Publisher : IGI Global
Total Pages : 660
Release :
ISBN-10 : 9781615207121
ISBN-13 : 1615207120
Rating : 4/5 (21 Downloads)

Synopsis Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications by : Zhang, Ming

"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Fuzzy Engineering Expert Systems with Neural Network Applications

Fuzzy Engineering Expert Systems with Neural Network Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 313
Release :
ISBN-10 : 9780471275343
ISBN-13 : 0471275344
Rating : 4/5 (43 Downloads)

Synopsis Fuzzy Engineering Expert Systems with Neural Network Applications by : Adedeji Bodunde Badiru

Provides an up-to-date integration of expert systems with fuzzy logic and neural networks. Includes coverage of simulation models not present in other books. Presents cases and examples taken from the authors' experience in research and applying the technology to real-world situations.

Neural Networks in Business

Neural Networks in Business
Author :
Publisher : IGI Global
Total Pages : 274
Release :
ISBN-10 : 1931777799
ISBN-13 : 9781931777797
Rating : 4/5 (99 Downloads)

Synopsis Neural Networks in Business by : Kate A. Smith

"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."

Process Neural Networks

Process Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 240
Release :
ISBN-10 : 9783540737629
ISBN-13 : 3540737626
Rating : 4/5 (29 Downloads)

Synopsis Process Neural Networks by : Xingui He

For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations

Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations
Author :
Publisher : World Scientific
Total Pages : 192
Release :
ISBN-10 : 9789811230226
ISBN-13 : 9811230226
Rating : 4/5 (26 Downloads)

Synopsis Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations by : Snehashish Chakraverty

The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.

Artificial Neural Networks in Hydrology

Artificial Neural Networks in Hydrology
Author :
Publisher : Springer Science & Business Media
Total Pages : 338
Release :
ISBN-10 : 9789401593410
ISBN-13 : 9401593418
Rating : 4/5 (10 Downloads)

Synopsis Artificial Neural Networks in Hydrology by : R.S. Govindaraju

R. S. GOVINDARAJU and ARAMACHANDRA RAO School of Civil Engineering Purdue University West Lafayette, IN. , USA Background and Motivation The basic notion of artificial neural networks (ANNs), as we understand them today, was perhaps first formalized by McCulloch and Pitts (1943) in their model of an artificial neuron. Research in this field remained somewhat dormant in the early years, perhaps because of the limited capabilities of this method and because there was no clear indication of its potential uses. However, interest in this area picked up momentum in a dramatic fashion with the works of Hopfield (1982) and Rumelhart et al. (1986). Not only did these studies place artificial neural networks on a firmer mathematical footing, but also opened the dOOf to a host of potential applications for this computational tool. Consequently, neural network computing has progressed rapidly along all fronts: theoretical development of different learning algorithms, computing capabilities, and applications to diverse areas from neurophysiology to the stock market. . Initial studies on artificial neural networks were prompted by adesire to have computers mimic human learning. As a result, the jargon associated with the technical literature on this subject is replete with expressions such as excitation and inhibition of neurons, strength of synaptic connections, learning rates, training, and network experience. ANNs have also been referred to as neurocomputers by people who want to preserve this analogy.