Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches
Download Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches full books in PDF, epub, and Kindle. Read online free Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: K. Gayathri Devi |
Publisher |
: CRC Press |
Total Pages |
: 269 |
Release |
: 2020-10-08 |
ISBN-10 |
: 9781000179538 |
ISBN-13 |
: 1000179532 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches by : K. Gayathri Devi
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Author |
: K. Gayathri Devi |
Publisher |
: CRC Press |
Total Pages |
: 267 |
Release |
: 2020-10-07 |
ISBN-10 |
: 9781000179514 |
ISBN-13 |
: 1000179516 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches by : K. Gayathri Devi
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Author |
: M. Arif Wani |
Publisher |
: Springer |
Total Pages |
: 300 |
Release |
: 2020-12-14 |
ISBN-10 |
: 9811567581 |
ISBN-13 |
: 9789811567582 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Deep Learning Applications, Volume 2 by : M. Arif Wani
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Author |
: Adam Bohr |
Publisher |
: Academic Press |
Total Pages |
: 385 |
Release |
: 2020-06-21 |
ISBN-10 |
: 9780128184394 |
ISBN-13 |
: 0128184396 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author |
: Rabinarayan Satpathy |
Publisher |
: John Wiley & Sons |
Total Pages |
: 433 |
Release |
: 2021-01-20 |
ISBN-10 |
: 9781119785606 |
ISBN-13 |
: 111978560X |
Rating |
: 4/5 (06 Downloads) |
Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Author |
: Sachi Nandan Mohanty |
Publisher |
: John Wiley & Sons |
Total Pages |
: 528 |
Release |
: 2021-07-14 |
ISBN-10 |
: 9781119785859 |
ISBN-13 |
: 1119785855 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Machine Learning Approach for Cloud Data Analytics in IoT by : Sachi Nandan Mohanty
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Author |
: Thomas, J. Joshua |
Publisher |
: IGI Global |
Total Pages |
: 355 |
Release |
: 2019-11-29 |
ISBN-10 |
: 9781799811947 |
ISBN-13 |
: 1799811948 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Deep Learning Techniques and Optimization Strategies in Big Data Analytics by : Thomas, J. Joshua
Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Author |
: Amit Joshi |
Publisher |
: Springer Nature |
Total Pages |
: 627 |
Release |
: 2020-10-22 |
ISBN-10 |
: 9789811571060 |
ISBN-13 |
: 9811571066 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Machine Learning for Predictive Analysis by : Amit Joshi
This book gathers papers addressing state-of-the-art research in the areas of machine learning and predictive analysis, presented virtually at the Fourth International Conference on Information and Communication Technology for Intelligent Systems (ICTIS 2020), India. It covers topics such as intelligent agent and multi-agent systems in various domains, machine learning, intelligent information retrieval and business intelligence, intelligent information system development using design science principles, intelligent web mining and knowledge discovery systems.
Author |
: Aboul-Ella Hassanien |
Publisher |
: Springer |
Total Pages |
: 307 |
Release |
: 2020-10-13 |
ISBN-10 |
: 3030552578 |
ISBN-13 |
: 9783030552572 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach by : Aboul-Ella Hassanien
This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19.
Author |
: Harvard Business Review |
Publisher |
: HBR Insights |
Total Pages |
: 160 |
Release |
: 2019 |
ISBN-10 |
: 1633697894 |
ISBN-13 |
: 9781633697898 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence by : Harvard Business Review
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.