Artificial Intelligence and Molecular Biology

Artificial Intelligence and Molecular Biology
Author :
Publisher :
Total Pages : 484
Release :
ISBN-10 : UOM:39015028911165
ISBN-13 :
Rating : 4/5 (65 Downloads)

Synopsis Artificial Intelligence and Molecular Biology by : Lawrence Hunter

These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. The enormous amount of data generated by the Human Genome Project and other large-scale biological research has created a rich and challenging domain for research in artificial intelligence. These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. Focusing on novel technologies and approaches, rather than on proven applications, they cover genetic sequence analysis, protein structure representation and prediction, automated data analysis aids, and simulation of biological systems. A brief introductory primer on molecular biology and Al gives computer scientists sufficient background to understand much of the biology discussed in the book. Lawrence Hunter is Director of the Machine Learning Project at the National Library of Medicine, National Institutes of Health.

Artificial Intelligence Technologies for Computational Biology

Artificial Intelligence Technologies for Computational Biology
Author :
Publisher : CRC Press
Total Pages : 345
Release :
ISBN-10 : 9781000778687
ISBN-13 : 1000778681
Rating : 4/5 (87 Downloads)

Synopsis Artificial Intelligence Technologies for Computational Biology by : Ranjeet Kumar Rout

This text emphasizes the importance of artificial intelligence techniques in the field of biological computation. It also discusses fundamental principles that can be applied beyond bio-inspired computing. It comprehensively covers important topics including data integration, data mining, machine learning, genetic algorithms, evolutionary computation, evolved neural networks, nature-inspired algorithms, and protein structure alignment. The text covers the application of evolutionary computations for fractal visualization of sequence data, artificial intelligence, and automatic image interpretation in modern biological systems. The text is primarily written for graduate students and academic researchers in areas of electrical engineering, electronics engineering, computer engineering, and computational biology. This book: • Covers algorithms in the fields of artificial intelligence, and machine learning useful in biological data analysis. • Discusses comprehensively artificial intelligence and automatic image interpretation in modern biological systems. • Presents the application of evolutionary computations for fractal visualization of sequence data. • Explores the use of genetic algorithms for pair-wise and multiple sequence alignments. • Examines the roles of efficient computational techniques in biology.

Bio-Inspired Artificial Intelligence

Bio-Inspired Artificial Intelligence
Author :
Publisher : MIT Press
Total Pages : 674
Release :
ISBN-10 : 9780262547734
ISBN-13 : 0262547732
Rating : 4/5 (34 Downloads)

Synopsis Bio-Inspired Artificial Intelligence by : Dario Floreano

A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.

Artificial Intelligence Technologies for Computational Biology

Artificial Intelligence Technologies for Computational Biology
Author :
Publisher : CRC Press
Total Pages : 339
Release :
ISBN-10 : 9781000778694
ISBN-13 : 100077869X
Rating : 4/5 (94 Downloads)

Synopsis Artificial Intelligence Technologies for Computational Biology by : Ranjeet Kumar Rout

This text emphasizes the importance of artificial intelligence techniques in the field of biological computation. It also discusses fundamental principles that can be applied beyond bio-inspired computing. It comprehensively covers important topics including data integration, data mining, machine learning, genetic algorithms, evolutionary computation, evolved neural networks, nature-inspired algorithms, and protein structure alignment. The text covers the application of evolutionary computations for fractal visualization of sequence data, artificial intelligence, and automatic image interpretation in modern biological systems. The text is primarily written for graduate students and academic researchers in areas of electrical engineering, electronics engineering, computer engineering, and computational biology. This book: • Covers algorithms in the fields of artificial intelligence, and machine learning useful in biological data analysis. • Discusses comprehensively artificial intelligence and automatic image interpretation in modern biological systems. • Presents the application of evolutionary computations for fractal visualization of sequence data. • Explores the use of genetic algorithms for pair-wise and multiple sequence alignments. • Examines the roles of efficient computational techniques in biology.

Data Analytics in Bioinformatics

Data Analytics in Bioinformatics
Author :
Publisher : John Wiley & Sons
Total Pages : 433
Release :
ISBN-10 : 9781119785606
ISBN-13 : 111978560X
Rating : 4/5 (06 Downloads)

Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Machine Learning in Bioinformatics

Machine Learning in Bioinformatics
Author :
Publisher : John Wiley & Sons
Total Pages : 476
Release :
ISBN-10 : 9780470397411
ISBN-13 : 0470397411
Rating : 4/5 (11 Downloads)

Synopsis Machine Learning in Bioinformatics by : Yanqing Zhang

An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.

Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics

Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics
Author :
Publisher : John Wiley & Sons
Total Pages : 534
Release :
ISBN-10 : 9781118345788
ISBN-13 : 1118345789
Rating : 4/5 (88 Downloads)

Synopsis Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics by : Yi Pan

Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics An in-depth look at the latest research, methods, and applications in the field of protein bioinformatics This book presents the latest developments in protein bioinformatics, introducing for the first time cutting-edge research results alongside novel algorithmic and AI methods for the analysis of protein data. In one complete, self-contained volume, Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics addresses key challenges facing both computer scientists and biologists, arming readers with tools and techniques for analyzing and interpreting protein data and solving a variety of biological problems. Featuring a collection of authoritative articles by leaders in the field, this work focuses on the analysis of protein sequences, structures, and interaction networks using both traditional algorithms and AI methods. It also examines, in great detail, data preparation, simulation, experiments, evaluation methods, and applications. Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics: Highlights protein analysis applications such as protein-related drug activity comparison Incorporates salient case studies illustrating how to apply the methods outlined in the book Tackles the complex relationship between proteins from a systems biology point of view Relates the topic to other emerging technologies such as data mining and visualization Includes many tables and illustrations demonstrating concepts and performance figures Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics is an essential reference for bioinformatics specialists in research and industry, and for anyone wishing to better understand the rich field of protein bioinformatics.

Advanced AI Techniques and Applications in Bioinformatics

Advanced AI Techniques and Applications in Bioinformatics
Author :
Publisher : CRC Press
Total Pages : 220
Release :
ISBN-10 : 9781000463019
ISBN-13 : 100046301X
Rating : 4/5 (19 Downloads)

Synopsis Advanced AI Techniques and Applications in Bioinformatics by : Loveleen Gaur

The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers

Biomedical Data Mining for Information Retrieval

Biomedical Data Mining for Information Retrieval
Author :
Publisher : John Wiley & Sons
Total Pages : 450
Release :
ISBN-10 : 9781119711247
ISBN-13 : 111971124X
Rating : 4/5 (47 Downloads)

Synopsis Biomedical Data Mining for Information Retrieval by : Sujata Dash

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Evolutionary Computation in Bioinformatics

Evolutionary Computation in Bioinformatics
Author :
Publisher : Elsevier
Total Pages : 425
Release :
ISBN-10 : 9780080506081
ISBN-13 : 0080506089
Rating : 4/5 (81 Downloads)

Synopsis Evolutionary Computation in Bioinformatics by : Gary B. Fogel

Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.