Machine Learning in Chemistry

Machine Learning in Chemistry
Author :
Publisher : American Chemical Society
Total Pages : 189
Release :
ISBN-10 : 9780841299009
ISBN-13 : 0841299005
Rating : 4/5 (09 Downloads)

Synopsis Machine Learning in Chemistry by : Jon Paul Janet

Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important

Machine Learning in Chemistry

Machine Learning in Chemistry
Author :
Publisher : Royal Society of Chemistry
Total Pages : 564
Release :
ISBN-10 : 9781788017893
ISBN-13 : 1788017897
Rating : 4/5 (93 Downloads)

Synopsis Machine Learning in Chemistry by : Hugh M. Cartwright

Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Computational and Data-Driven Chemistry Using Artificial Intelligence

Computational and Data-Driven Chemistry Using Artificial Intelligence
Author :
Publisher : Elsevier
Total Pages : 280
Release :
ISBN-10 : 9780128232729
ISBN-13 : 0128232722
Rating : 4/5 (29 Downloads)

Synopsis Computational and Data-Driven Chemistry Using Artificial Intelligence by : Takashiro Akitsu

Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields

Artificial Intelligence in Drug Discovery

Artificial Intelligence in Drug Discovery
Author :
Publisher : Royal Society of Chemistry
Total Pages : 425
Release :
ISBN-10 : 9781839160547
ISBN-13 : 1839160543
Rating : 4/5 (47 Downloads)

Synopsis Artificial Intelligence in Drug Discovery by : Nathan Brown

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.

Artificial Intelligence in Chemistry

Artificial Intelligence in Chemistry
Author :
Publisher : Frontiers Media SA
Total Pages : 89
Release :
ISBN-10 : 9782889638703
ISBN-13 : 2889638707
Rating : 4/5 (03 Downloads)

Synopsis Artificial Intelligence in Chemistry by : José S. Torrecilla

Using Artificial Intelligence in Chemistry and Biology

Using Artificial Intelligence in Chemistry and Biology
Author :
Publisher : CRC Press
Total Pages : 358
Release :
ISBN-10 : 9780849384141
ISBN-13 : 0849384141
Rating : 4/5 (41 Downloads)

Synopsis Using Artificial Intelligence in Chemistry and Biology by : Hugh Cartwright

Possessing great potential power for gathering and managing data in chemistry, biology, and other sciences, Artificial Intelligence (AI) methods are prompting increased exploration into the most effective areas for implementation. A comprehensive resource documenting the current state-of-the-science and future directions of the field is required to

Applications of Artificial Intelligence in Chemistry

Applications of Artificial Intelligence in Chemistry
Author :
Publisher : Oxford University Press on Demand
Total Pages : 92
Release :
ISBN-10 : 0198557361
ISBN-13 : 9780198557364
Rating : 4/5 (61 Downloads)

Synopsis Applications of Artificial Intelligence in Chemistry by : Hugh M. Cartwright

It is clear that the techniques of artificial intelligence are useful for more than just the development of thinking machines; they constitute powerful problem-solving tools in their own right and expand the range of problems in science that can be tackled. AI methods can now be used on a routine basis by scientists in academic research as well as the commercial world, it is therefore vital that science students are exposed to, and understand these techniques. This is the first book topresent an introduction to AI methods for science undergraduates. The examples are drawn mainly from chemistry but the book is suited to a general scientific audience wanting to know more about how computers can help to understand and interpret science.

Machine Learning in Chemistry

Machine Learning in Chemistry
Author :
Publisher :
Total Pages : 140
Release :
ISBN-10 : 0841235058
ISBN-13 : 9780841235052
Rating : 4/5 (58 Downloads)

Synopsis Machine Learning in Chemistry by : Edward O. Pyzer-Knapp

Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.

Data Science in Chemistry

Data Science in Chemistry
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 540
Release :
ISBN-10 : 9783110629453
ISBN-13 : 3110629453
Rating : 4/5 (53 Downloads)

Synopsis Data Science in Chemistry by : Thorsten Gressling

The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity – data science – includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing.

Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering
Author :
Publisher : Elsevier
Total Pages : 542
Release :
ISBN-10 : 9780128217436
ISBN-13 : 012821743X
Rating : 4/5 (36 Downloads)

Synopsis Applications of Artificial Intelligence in Process Systems Engineering by : Jingzheng Ren

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering