Artificial Intelligence for Autonomous Networks

Artificial Intelligence for Autonomous Networks
Author :
Publisher : CRC Press
Total Pages : 498
Release :
ISBN-10 : 9781351130141
ISBN-13 : 1351130145
Rating : 4/5 (41 Downloads)

Synopsis Artificial Intelligence for Autonomous Networks by : Mazin Gilbert

Artificial Intelligence for Autonomous Networks introduces the autonomous network by juxtaposing two unique technologies and communities: Networking and AI. The book reviews the technologies behind AI and software-defined network/network function virtualization, highlighting the exciting opportunities to integrate those two worlds. Outlining the new frontiers for autonomous networks, this book highlights their impact and benefits to consumers and enterprise customers. It also explores the potential of the autonomous network for transforming network operation, cyber security, enterprise services, 5G and IoT, infrastructure monitoring and traffic optimization, and finally, customer experience and care. With contributions from leading experts, this book will provide an invaluable resource for network engineers, software engineers, artificial intelligence, and machine learning researchers.

Towards Cognitive Autonomous Networks

Towards Cognitive Autonomous Networks
Author :
Publisher : John Wiley & Sons
Total Pages : 560
Release :
ISBN-10 : 9781119586388
ISBN-13 : 1119586380
Rating : 4/5 (88 Downloads)

Synopsis Towards Cognitive Autonomous Networks by : Stephen S. Mwanje

Learn about the latest in cognitive and autonomous network management Towards Cognitive Autonomous Networks: Network Management Automation for 5G and Beyond delivers a comprehensive understanding of the current state-of-the-art in cognitive and autonomous network operation. Authors Mwanje and Bell fully describe todays capabilities while explaining the future potential of these powerful technologies. This book advocates for autonomy in new 5G networks, arguing that the virtualization of network functions render autonomy an absolute necessity. Following that, the authors move on to comprehensively explain the background and history of large networks, and how we come to find ourselves in the place were in now. Towards Cognitive Autonomous Networks describes several novel techniques and applications of cognition and autonomy required for end-to-end cognition including: • Configuration of autonomous networks • Operation of autonomous networks • Optimization of autonomous networks • Self-healing autonomous networks The book concludes with an examination of the extensive challenges facing completely autonomous networks now and in the future.

Designing Autonomous AI

Designing Autonomous AI
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 253
Release :
ISBN-10 : 9781098110703
ISBN-13 : 1098110706
Rating : 4/5 (03 Downloads)

Synopsis Designing Autonomous AI by : Kence Anderson

Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing
Author :
Publisher : Academic Press
Total Pages : 398
Release :
ISBN-10 : 9780323958165
ISBN-13 : 0323958168
Rating : 4/5 (65 Downloads)

Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Bio-Inspired Artificial Intelligence

Bio-Inspired Artificial Intelligence
Author :
Publisher : MIT Press
Total Pages : 674
Release :
ISBN-10 : 9780262547734
ISBN-13 : 0262547732
Rating : 4/5 (34 Downloads)

Synopsis Bio-Inspired Artificial Intelligence by : Dario Floreano

A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.

Web, Artificial Intelligence and Network Applications

Web, Artificial Intelligence and Network Applications
Author :
Publisher : Springer
Total Pages : 1217
Release :
ISBN-10 : 9783030150358
ISBN-13 : 3030150356
Rating : 4/5 (58 Downloads)

Synopsis Web, Artificial Intelligence and Network Applications by : Leonard Barolli

The aim of the book is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of Web Computing, Intelligent Systems and Internet Computing. As the Web has become a major source of information, techniques and methodologies that extract quality information are of paramount importance for many Web and Internet applications. Data mining and knowledge discovery play key roles in many of today’s prominent Web applications such as e-commerce and computer security. Moreover, the outcome of Web services delivers a new platform for enabling service-oriented systems. The emergence of large scale distributed computing paradigms, such as Cloud Computing and Mobile Computing Systems, has opened many opportunities for collaboration services, which are at the core of any Information System. Artificial Intelligence (AI) is an area of computer science that build intelligent systems and algorithms that work and react like humans. The AI techniques and computational intelligence are powerful tools for learning, adaptation, reasoning and planning. They have the potential to become enabling technologies for the future intelligent networks. Recent research in the field of intelligent systems, robotics, neuroscience, artificial intelligence and cognitive sciences are very important for the future development and innovation of Web and Internet applications.

Autonomous Horizons

Autonomous Horizons
Author :
Publisher : Independently Published
Total Pages : 420
Release :
ISBN-10 : 1092834346
ISBN-13 : 9781092834346
Rating : 4/5 (46 Downloads)

Synopsis Autonomous Horizons by : Greg Zacharias

Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.

Information Technology Innovation

Information Technology Innovation
Author :
Publisher : National Academies Press
Total Pages : 148
Release :
ISBN-10 : 9780309684231
ISBN-13 : 0309684234
Rating : 4/5 (31 Downloads)

Synopsis Information Technology Innovation by : National Academies of Sciences, Engineering, and Medicine

Information technology (IT) is widely understood to be the enabling technology of the 21st century. IT has transformed, and continues to transform, all aspects of our lives: commerce and finance, education, energy, health care, manufacturing, government, national security, transportation, communications, entertainment, science, and engineering. IT and its impact on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow in size and importance. IT’s impacts on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow. IT enabled innovation and advances in IT products and services draw on a deep tradition of research and rely on sustained investment and a uniquely strong partnership in the United States among government, industry, and universities. Past returns on federal investments in IT research have been extraordinary for both U.S. society and the U.S. economy. This IT innovation ecosystem fuels a virtuous cycle of innovation with growing economic impact. Building on previous National Academies work, this report describes key features of the IT research ecosystem that fuel IT innovation and foster widespread and longstanding impact across the U.S. economy. In addition to presenting established computing research areas and industry sectors, it also considers emerging candidates in both categories.

Deploying Machine Learning

Deploying Machine Learning
Author :
Publisher : Addison-Wesley Professional
Total Pages : 99998
Release :
ISBN-10 : 0135226201
ISBN-13 : 9780135226209
Rating : 4/5 (01 Downloads)

Synopsis Deploying Machine Learning by : Robbie Allen

Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.