Artificial Intelligence And Machine Learning For Business For Non Engineers
Download Artificial Intelligence And Machine Learning For Business For Non Engineers full books in PDF, epub, and Kindle. Read online free Artificial Intelligence And Machine Learning For Business For Non Engineers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Stephan S. Jones |
Publisher |
: CRC Press |
Total Pages |
: 165 |
Release |
: 2019-11-22 |
ISBN-10 |
: 9781000733655 |
ISBN-13 |
: 1000733653 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Artificial Intelligence and Machine Learning for Business for Non-Engineers by : Stephan S. Jones
The next big area within the information and communication technology field is Artificial Intelligence (AI). The industry is moving to automate networks, cloud-based systems (e.g., Salesforce), databases (e.g., Oracle), AWS machine learning (e.g., Amazon Lex), and creating infrastructure that has the ability to adapt in real-time to changes and learn what to anticipate in the future. It is an area of technology that is coming faster and penetrating more areas of business than any other in our history. AI will be used from the C-suite to the distribution warehouse floor. Replete with case studies, this book provides a working knowledge of AI’s current and future capabilities and the impact it will have on every business. It covers everything from healthcare to warehousing, banking, finance and education. It is essential reading for anyone involved in industry.
Author |
: Stephan S. Jones |
Publisher |
: CRC Press |
Total Pages |
: 164 |
Release |
: 2019-11-22 |
ISBN-10 |
: 9781000733990 |
ISBN-13 |
: 1000733998 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Artificial Intelligence and Machine Learning for Business for Non-Engineers by : Stephan S. Jones
The next big area within the information and communication technology field is Artificial Intelligence (AI). The industry is moving to automate networks, cloud-based systems (e.g., Salesforce), databases (e.g., Oracle), AWS machine learning (e.g., Amazon Lex), and creating infrastructure that has the ability to adapt in real-time to changes and learn what to anticipate in the future. It is an area of technology that is coming faster and penetrating more areas of business than any other in our history. AI will be used from the C-suite to the distribution warehouse floor. Replete with case studies, this book provides a working knowledge of AI’s current and future capabilities and the impact it will have on every business. It covers everything from healthcare to warehousing, banking, finance and education. It is essential reading for anyone involved in industry.
Author |
: Pedro Domingos |
Publisher |
: Basic Books |
Total Pages |
: 354 |
Release |
: 2015-09-22 |
ISBN-10 |
: 9780465061921 |
ISBN-13 |
: 0465061923 |
Rating |
: 4/5 (21 Downloads) |
Synopsis The Master Algorithm by : Pedro Domingos
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Author |
: Kevin Ferguson |
Publisher |
: Simon and Schuster |
Total Pages |
: 611 |
Release |
: 2019-01-06 |
ISBN-10 |
: 9781638354017 |
ISBN-13 |
: 1638354014 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Deep Learning and the Game of Go by : Kevin Ferguson
Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
Author |
: Alexey Grigorev |
Publisher |
: Simon and Schuster |
Total Pages |
: 470 |
Release |
: 2021-11-23 |
ISBN-10 |
: 9781617296819 |
ISBN-13 |
: 1617296813 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Machine Learning Bookcamp by : Alexey Grigorev
The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
Author |
: Alex Castrounis |
Publisher |
: O'Reilly Media |
Total Pages |
: 317 |
Release |
: 2019-07-05 |
ISBN-10 |
: 9781492036548 |
ISBN-13 |
: 1492036544 |
Rating |
: 4/5 (48 Downloads) |
Synopsis AI for People and Business by : Alex Castrounis
If you’re an executive, manager, or anyone interested in leveraging AI within your organization, this is your guide. You’ll understand exactly what AI is, learn how to identify AI opportunities, and develop and execute a successful AI vision and strategy. Alex Castrounis, business consultant and former IndyCar engineer and race strategist, examines the value of AI and shows you how to develop an AI vision and strategy that benefits both people and business. AI is exciting, powerful, and game changing—but too many AI initiatives end in failure. With this book, you’ll explore the risks, considerations, trade-offs, and constraints for pursuing an AI initiative. You’ll learn how to create better human experiences and greater business success through winning AI solutions and human-centered products. Use the book’s AIPB Framework to conduct end-to-end, goal-driven innovation and value creation with AI Define a goal-aligned AI vision and strategy for stakeholders, including businesses, customers, and users Leverage AI successfully by focusing on concepts such as scientific innovation and AI readiness and maturity Understand the importance of executive leadership for pursuing AI initiatives "A must read for business executives and managers interested in learning about AI and unlocking its benefits. Alex Castrounis has simplified complex topics so that anyone can begin to leverage AI within their organization." - Dan Park, GM & Director, Uber "Alex Castrounis has been at the forefront of helping organizations understand the promise of AI and leverage its benefits, while avoiding the many pitfalls that can derail success. In this essential book, he shares his expertise with the rest of us." - Dean Wampler, Ph.D., VP, Fast Data Engineering at Lightbend
Author |
: Shahab D. Mohaghegh |
Publisher |
: Springer |
Total Pages |
: 292 |
Release |
: 2017-02-09 |
ISBN-10 |
: 9783319487533 |
ISBN-13 |
: 3319487531 |
Rating |
: 4/5 (33 Downloads) |
Synopsis Shale Analytics by : Shahab D. Mohaghegh
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.
Author |
: Chkoniya, Valentina |
Publisher |
: IGI Global |
Total Pages |
: 653 |
Release |
: 2021-06-25 |
ISBN-10 |
: 9781799869863 |
ISBN-13 |
: 1799869865 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry by : Chkoniya, Valentina
The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
Author |
: Sandeep Kumar Panda |
Publisher |
: CRC Press |
Total Pages |
: 279 |
Release |
: 2021-11-04 |
ISBN-10 |
: 9781000432114 |
ISBN-13 |
: 1000432114 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Artificial Intelligence and Machine Learning in Business Management by : Sandeep Kumar Panda
Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines.
Author |
: Wang, John |
Publisher |
: IGI Global |
Total Pages |
: 3296 |
Release |
: 2023-01-20 |
ISBN-10 |
: 9781799892212 |
ISBN-13 |
: 1799892212 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Encyclopedia of Data Science and Machine Learning by : Wang, John
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.