Approaches To Human Centered Ai In Healthcare
Download Approaches To Human Centered Ai In Healthcare full books in PDF, epub, and Kindle. Read online free Approaches To Human Centered Ai In Healthcare ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ben Shneiderman |
Publisher |
: Oxford University Press |
Total Pages |
: 390 |
Release |
: 2022 |
ISBN-10 |
: 9780192845290 |
ISBN-13 |
: 0192845292 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Human-Centered AI by : Ben Shneiderman
The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.
Author |
: Grover, Veena |
Publisher |
: IGI Global |
Total Pages |
: 347 |
Release |
: 2024-03-11 |
ISBN-10 |
: 9798369322390 |
ISBN-13 |
: |
Rating |
: 4/5 (90 Downloads) |
Synopsis Approaches to Human-Centered AI in Healthcare by : Grover, Veena
The integration of artificial intelligence (AI) stands as both a promise and a challenge in the field of healthcare. As technological advancements reshape the industry, academic scholars find themselves at the forefront of a crucial dialogue about the ethical implications and societal repercussions of AI. The accelerating sophistication of AI technologies brings forth a central dilemma: how to maintain the crucial human touch required for compassionate and effective patient care in the face of unprecedented technical progress. This challenge is not only a theoretical concern but a pressing reality as healthcare systems increasingly rely on AI-driven solutions. Approaches to Human-Centered AI in Healthcare emerges as a significant guide, offering a comprehensive exploration of the opportunities and challenges entwined with the integration of AI into healthcare. The book becomes a critical compass, navigating readers through the intricate intersections of AI and patient care. By delving into real-world case studies, cutting-edge research findings, and practical recommendations, it provides a roadmap for scholars to navigate the complexities of healthcare AI. In doing so, it aims not only to inform but to shape the discourse around the responsible integration of AI, ensuring that the fundamental principles of compassionate patient care remain at the forefront.
Author |
: Adam Bohr |
Publisher |
: Academic Press |
Total Pages |
: 385 |
Release |
: 2020-06-21 |
ISBN-10 |
: 9780128184394 |
ISBN-13 |
: 0128184396 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author |
: David Riaño |
Publisher |
: Springer |
Total Pages |
: 431 |
Release |
: 2019-06-19 |
ISBN-10 |
: 9783030216429 |
ISBN-13 |
: 303021642X |
Rating |
: 4/5 (29 Downloads) |
Synopsis Artificial Intelligence in Medicine by : David Riaño
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Author |
: Andreas Holzinger |
Publisher |
: Springer |
Total Pages |
: 503 |
Release |
: 2016-12-09 |
ISBN-10 |
: 9783319504780 |
ISBN-13 |
: 3319504789 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Machine Learning for Health Informatics by : Andreas Holzinger
Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.
Author |
: Veena Grover |
Publisher |
: IGI Global |
Total Pages |
: 0 |
Release |
: 2024 |
ISBN-10 |
: 9798369322383 |
ISBN-13 |
: |
Rating |
: 4/5 (83 Downloads) |
Synopsis Approaches to Human-Centered AI in Healthcare by : Veena Grover
"With a focus on the crucial part that patient-centered care plays, it seeks to provide a thorough knowledge of the interface between artificial intelligence and healthcare"--
Author |
: Andreas Holzinger |
Publisher |
: Springer |
Total Pages |
: 283 |
Release |
: 2015-02-24 |
ISBN-10 |
: 9783319162263 |
ISBN-13 |
: 3319162268 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Smart Health by : Andreas Holzinger
Prolonged life expectancy along with the increasing complexity of medicine and health services raises health costs worldwide dramatically. Whilst the smart health concept has much potential to support the concept of the emerging P4-medicine (preventive, participatory, predictive, and personalized), such high-tech medicine produces large amounts of high-dimensional, weakly-structured data sets and massive amounts of unstructured information. All these technological approaches along with “big data” are turning the medical sciences into a data-intensive science. To keep pace with the growing amounts of complex data, smart hospital approaches are a commandment of the future, necessitating context aware computing along with advanced interaction paradigms in new physical-digital ecosystems. The very successful synergistic combination of methodologies and approaches from Human-Computer Interaction (HCI) and Knowledge Discovery and Data Mining (KDD) offers ideal conditions for the vision to support human intelligence with machine learning. The papers selected for this volume focus on hot topics in smart health; they discuss open problems and future challenges in order to provide a research agenda to stimulate further research and progress.
Author |
: Kerrie L. Holley |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 222 |
Release |
: 2021-04-19 |
ISBN-10 |
: 9781492063100 |
ISBN-13 |
: 149206310X |
Rating |
: 4/5 (00 Downloads) |
Synopsis AI-First Healthcare by : Kerrie L. Holley
AI is poised to transform every aspect of healthcare, including the way we manage personal health, from customer experience and clinical care to healthcare cost reductions. This practical book is one of the first to describe present and future use cases where AI can help solve pernicious healthcare problems. Kerrie Holley and Siupo Becker provide guidance to help informatics and healthcare leadership create AI strategy and implementation plans for healthcare. With this book, business stakeholders and practitioners will be able to build knowledge, a roadmap, and the confidence to support AIin their organizations—without getting into the weeds of algorithms or open source frameworks. Cowritten by an AI technologist and a medical doctor who leverages AI to solve healthcare’s most difficult challenges, this book covers: The myths and realities of AI, now and in the future Human-centered AI: what it is and how to make it possible Using various AI technologies to go beyond precision medicine How to deliver patient care using the IoT and ambient computing with AI How AI can help reduce waste in healthcare AI strategy and how to identify high-priority AI application
Author |
: David D. Luxton |
Publisher |
: Academic Press |
Total Pages |
: 309 |
Release |
: 2015-09-10 |
ISBN-10 |
: 9780128007921 |
ISBN-13 |
: 0128007923 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Artificial Intelligence in Behavioral and Mental Health Care by : David D. Luxton
Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings
Author |
: Yang Li |
Publisher |
: Springer Nature |
Total Pages |
: 602 |
Release |
: 2021-11-04 |
ISBN-10 |
: 9783030826819 |
ISBN-13 |
: 3030826813 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Artificial Intelligence for Human Computer Interaction: A Modern Approach by : Yang Li
This edited book explores the many interesting questions that lie at the intersection between AI and HCI. It covers a comprehensive set of perspectives, methods and projects that present the challenges and opportunities that modern AI methods bring to HCI researchers and practitioners. The chapters take a clear departure from traditional HCI methods and leverage data-driven and deep learning methods to tackle HCI problems that were previously challenging or impossible to address. It starts with addressing classic HCI topics, including human behaviour modeling and input, and then dedicates a section to data and tools, two technical pillars of modern AI methods. These chapters exemplify how state-of-the-art deep learning methods infuse new directions and allow researchers to tackle long standing and newly emerging HCI problems alike. Artificial Intelligence for Human Computer Interaction: A Modern Approach concludes with a section on Specific Domains which covers a set of emerging HCI areas where modern AI methods start to show real impact, such as personalized medical, design, and UI automation.