Applied Mechanics of Solids

Applied Mechanics of Solids
Author :
Publisher : CRC Press
Total Pages : 820
Release :
ISBN-10 : 9781439802489
ISBN-13 : 1439802483
Rating : 4/5 (89 Downloads)

Synopsis Applied Mechanics of Solids by : Allan F. Bower

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o

Engineering Mechanics of Materials

Engineering Mechanics of Materials
Author :
Publisher : Springer Science & Business Media
Total Pages : 704
Release :
ISBN-10 : 9781461230229
ISBN-13 : 1461230225
Rating : 4/5 (29 Downloads)

Synopsis Engineering Mechanics of Materials by : B.B. Muvdi

4. 2 Solid Circular Shafts-Angle of Twist and Shearing Stresses 159 4. 3 Hollow Circular Shafts-Angle of Twist and Shearing Stresses 166 4. 4 Principal Stresses and Strains Associated with Torsion 173 4. 5 Analytical and Experimental Solutions for Torsion of Members of Noncircular Cross Sections 179 4. 6 Shearing Stress-Strain Properties 188 *4. 7 Computer Applications 195 5 Stresses in Beams 198 5. 1 Introduction 198 5. 2 Review of Properties of Areas 198 5. 3 Flexural Stresses due to Symmetric Bending of Beams 211 5. 4 Shear Stresses in Symmetrically Loaded Beams 230 *5. 5 Flexural Stresses due to Unsymmetric Bending of Beams 248 *5. 6 Computer Applications 258 Deflections of Beams 265 I 6. 1 Introduction 265 6. 2 Moment-Curvature Relationship 266 6. 3 Beam Deflections-Two Successive Integrations 268 6. 4 Derivatives of the Elastic Curve Equation and Their Physical Significance 280 6. 5 Beam Deflections-The Method of Superposition 290 6. 6 Construction of Moment Diagrams by Cantilever Parts 299 6. 7 Beam Deflections-The Area-Moment Method 302 *6. 8 Beam Deflections-Singularity Functions 319 *6. 9 Beam Deflections-Castigliano's Second Theorem 324 *6. 10 Computer Applications 332 7 Combined Stresses and Theories of Failure 336 7. 1 Introduction 336 7. 2 Axial and Torsional Stresses 336 Axial and Flexural Stresses 342 7. 3 Torsional and Flexural Stresses 352 7. 4 7. 5 Torsional, Flexural, and Axial Stresses 358 *7. 6 Theories of Failure 365 Computer Applications 378 *7.

Engineering Mechanics 2

Engineering Mechanics 2
Author :
Publisher : Springer
Total Pages : 318
Release :
ISBN-10 : 9783662562727
ISBN-13 : 3662562723
Rating : 4/5 (27 Downloads)

Synopsis Engineering Mechanics 2 by : Dietmar Gross

Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.

Mechanics of Materials

Mechanics of Materials
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9780123838520
ISBN-13 : 0123838525
Rating : 4/5 (20 Downloads)

Synopsis Mechanics of Materials by : Christopher Jenkins

& Quot;The unifying treatment of structural design presented here should prove useful to any engineer involved in the design of structures. A crucial divide to be bridged is that between applied mechanics and materials science. The onset of specialization and the rapid rise of technology, however, have created separate disciplines concerned with the deformation of solid materials. Unfortunately, the result is in many cases that society loses out on having at their service efficient, high-performance material/structural systems. & quot. & quot;We follow in this text a very methodological process to introduce mechanics, materials, and design issues in a manner called total structural design. The idea is to seek a solution in & quot;total design space. & quot; & quot. & quot;The material presented in this text is suitable for a first course that encompasses both the traditional mechanics of materials and properties of materials courses. The text is also appropriate for a second course in mechanics of materials or a follow-on course in design of structures, taken after the typical introductory mechanics and properties courses. This text can be adapted to several different curriculum formats, whether traditional or modern. Instructors using the text for a traditional course may find that the text in fact facilitates transforming their course over time to a more modern, integrated approach. & quot;--BOOK JACKET.

Applied Strength of Materials

Applied Strength of Materials
Author :
Publisher : CRC Press
Total Pages : 868
Release :
ISBN-10 : 9781498716765
ISBN-13 : 1498716768
Rating : 4/5 (65 Downloads)

Synopsis Applied Strength of Materials by : Robert L. Mott

Designed for a first course in strength of materials, Applied Strength of Materials has long been the bestseller for Engineering Technology programs because of its comprehensive coverage, and its emphasis on sound fundamentals, applications, and problem-solving techniques. The combination of clear and consistent problem-solving techniques, numerous end-of-chapter problems, and the integration of both analysis and design approaches to strength of materials principles prepares students for subsequent courses and professional practice. The fully updated Sixth Edition. Built around an educational philosophy that stresses active learning, consistent reinforcement of key concepts, and a strong visual component, Applied Strength of Materials, Sixth Edition continues to offer the readers the most thorough and understandable approach to mechanics of materials.

Mechanics of Materials

Mechanics of Materials
Author :
Publisher : Springer
Total Pages : 258
Release :
ISBN-10 : 9783319075723
ISBN-13 : 3319075721
Rating : 4/5 (23 Downloads)

Synopsis Mechanics of Materials by : Parviz Ghavami

This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction; as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials.

Applied Mechanics of Polymers

Applied Mechanics of Polymers
Author :
Publisher : Elsevier
Total Pages : 320
Release :
ISBN-10 : 9780128210796
ISBN-13 : 0128210796
Rating : 4/5 (96 Downloads)

Synopsis Applied Mechanics of Polymers by : George Youssef

Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. - Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components - Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material - Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications

Mechanics of Materials For Dummies

Mechanics of Materials For Dummies
Author :
Publisher : John Wiley & Sons
Total Pages : 397
Release :
ISBN-10 : 9781118089019
ISBN-13 : 1118089014
Rating : 4/5 (19 Downloads)

Synopsis Mechanics of Materials For Dummies by : James H. Allen, III

Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!

Advanced Mechanics of Materials and Applied Elasticity

Advanced Mechanics of Materials and Applied Elasticity
Author :
Publisher : Pearson Education
Total Pages : 699
Release :
ISBN-10 : 9780137079810
ISBN-13 : 0137079818
Rating : 4/5 (10 Downloads)

Synopsis Advanced Mechanics of Materials and Applied Elasticity by : Ansel C. Ugural

This systematic exploration of real-world stress analysis has been completely updated to reflect state-of-the-art methods and applications now used in aeronautical, civil, and mechanical engineering, and engineering mechanics. Distinguished by its exceptional visual interpretations of solutions, Advanced Mechanics of Materials and Applied Elasticity offers in-depth coverage for both students and engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods—preparing readers for both advanced study and professional practice in design and analysis. This major revision contains many new, fully reworked, illustrative examples and an updated problem set—including many problems taken directly from modern practice. It offers extensive content improvements throughout, beginning with an all-new introductory chapter on the fundamentals of materials mechanics and elasticity. Readers will find new and updated coverage of plastic behavior, three-dimensional Mohr’s circles, energy and variational methods, materials, beams, failure criteria, fracture mechanics, compound cylinders, shrink fits, buckling of stepped columns, common shell types, and many other topics. The authors present significantly expanded and updated coverage of stress concentration factors and contact stress developments. Finally, they fully introduce computer-oriented approaches in a comprehensive new chapter on the finite element method.