Applied and Computational Complex Analysis, Volume 1

Applied and Computational Complex Analysis, Volume 1
Author :
Publisher : John Wiley & Sons
Total Pages : 704
Release :
ISBN-10 : 0471608416
ISBN-13 : 9780471608417
Rating : 4/5 (16 Downloads)

Synopsis Applied and Computational Complex Analysis, Volume 1 by : Peter Henrici

Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.

Applied and Computational Complex Analysis, Volume 2

Applied and Computational Complex Analysis, Volume 2
Author :
Publisher : Wiley-Interscience
Total Pages : 682
Release :
ISBN-10 : UOM:39015024888052
ISBN-13 :
Rating : 4/5 (52 Downloads)

Synopsis Applied and Computational Complex Analysis, Volume 2 by : Peter Henrici

A self-contained presentation of the major areas of complex analysis that are referred to and used in applied mathematics and mathematical physics. Topics discussed include infinite products, ordinary differential equations and asymptotic methods.

Applied and Computational Complex Analysis, Volume 3

Applied and Computational Complex Analysis, Volume 3
Author :
Publisher : John Wiley & Sons
Total Pages : 660
Release :
ISBN-10 : 0471589861
ISBN-13 : 9780471589860
Rating : 4/5 (61 Downloads)

Synopsis Applied and Computational Complex Analysis, Volume 3 by : Peter Henrici

Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.

Complex Analysis

Complex Analysis
Author :
Publisher : Princeton University Press
Total Pages : 398
Release :
ISBN-10 : 9781400831159
ISBN-13 : 1400831156
Rating : 4/5 (59 Downloads)

Synopsis Complex Analysis by : Elias M. Stein

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Visual Complex Analysis

Visual Complex Analysis
Author :
Publisher : Oxford University Press
Total Pages : 620
Release :
ISBN-10 : 0198534469
ISBN-13 : 9780198534464
Rating : 4/5 (69 Downloads)

Synopsis Visual Complex Analysis by : Tristan Needham

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Complex Variables

Complex Variables
Author :
Publisher : American Mathematical Soc.
Total Pages : 319
Release :
ISBN-10 : 9780821869017
ISBN-13 : 0821869019
Rating : 4/5 (17 Downloads)

Synopsis Complex Variables by : Joseph L. Taylor

"The text covers a broad spectrum between basic and advanced complex variables on the one hand and between theoretical and applied or computational material on the other hand. With careful selection of the emphasis put on the various sections, examples, and exercises, the book can be used in a one- or two-semester course for undergraduate mathematics majors, a one-semester course for engineering or physics majors, or a one-semester course for first-year mathematics graduate students. It has been tested in all three settings at the University of Utah. The exposition is clear, concise, and lively. There is a clean and modern approach to Cauchy's theorems and Taylor series expansions, with rigorous proofs but no long and tedious arguments. This is followed by the rich harvest of easy consequences of the existence of power series expansions. Through the central portion of the text, there is a careful and extensive treatment of residue theory and its application to computation of integrals, conformal mapping and its applications to applied problems, analytic continuation, and the proofs of the Picard theorems. Chapter 8 covers material on infinite products and zeroes of entire functions. This leads to the final chapter which is devoted to the Riemann zeta function, the Riemann Hypothesis, and a proof of the Prime Number Theorem." -- Publisher.

Applied and Computational Optimal Control

Applied and Computational Optimal Control
Author :
Publisher : Springer Nature
Total Pages : 581
Release :
ISBN-10 : 9783030699130
ISBN-13 : 3030699137
Rating : 4/5 (30 Downloads)

Synopsis Applied and Computational Optimal Control by : Kok Lay Teo

The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.

Computational Cell Biology

Computational Cell Biology
Author :
Publisher : Springer Science & Business Media
Total Pages : 484
Release :
ISBN-10 : 9780387224596
ISBN-13 : 0387224599
Rating : 4/5 (96 Downloads)

Synopsis Computational Cell Biology by : Christopher P. Fall

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.

Complex Analysis

Complex Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 316
Release :
ISBN-10 : 0387947566
ISBN-13 : 9780387947563
Rating : 4/5 (66 Downloads)

Synopsis Complex Analysis by : Joseph Bak

This unusually lively textbook introduces the theory of analytic functions, explores its diverse applications and shows the reader how to harness its powerful techniques. The book offers new and interesting motivations for classical results and introduces related topics that do not appear in this form in other texts. For the second edition, the authors have revised some of the existing material and have provided new exercises and solutions.

Classical Complex Analysis

Classical Complex Analysis
Author :
Publisher : World Scientific
Total Pages : 713
Release :
ISBN-10 : 9789814271288
ISBN-13 : 9814271284
Rating : 4/5 (88 Downloads)

Synopsis Classical Complex Analysis by : I-Hsiung Lin

Classical Complex Analysis provides an introduction to one of the remarkable branches of exact science, with an emphasis on the geometric aspects of analytic functions. This volume begins with a geometric description of what a complex number is, followed by a detailed account of algebraic, analytic and geometric properties of standard complex-valued functions. Geometric properties of analytic functions are then developed and described In detail, and various applications of residues are Included; analytic continuation is also introduced. --Book Jacket.